Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
World J Clin Cases ; 12(21): 4469-4475, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39070822

RESUMEN

BACKGROUND: Respiratory viruses are increasingly detected in children with community-acquired pneumonia. Further strategies to limit antibiotic use in children with viral pneumonia are warranted. AIM: To explore clinical efficacy of budesonide/formoterol inhalation powder for viral pneumonia in children and its impact on cellular immunity and inflammatory factor production. METHODS: A total of 60 children with viral pneumonia were recruited: 30 receiving budesonide/formoterol inhalation powder and 30 conventional symptomatic treatment. Outcome measures included peripheral blood levels of inflammatory cytokines, CD4+, CD8+, Th1, Th2, Th17 and Treg, clinical efficacy, and incidence of adverse reactions. RESULTS: Compared with the control group, the observation group showed a significant reduction in interleukin-6 and high-sensitivity C-reactive protein levels after treatment. Compared with the control group, the observation group showed a significant increase in CD4+/CD8+ and Th1/Th2 levels, and a decrease in Th17/Treg levels after treatment. The total effective rates in the observation group and the control group were 93.75% and 85.00%, respectively, which was a significant difference (P = 0.003). CONCLUSION: Budesonide/formoterol inhalation powder significantly improved therapeutic efficacy for viral pneumonia in children. The mechanism of action may be related to downregulation of the inflammatory response and improved cellular immune function.

2.
Anal Chim Acta ; 986: 109-114, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28870314

RESUMEN

Mercury ions sensing is an important issue for human health and environmental safety. A novel fluorescence nanosensor was designed for rapid visual detection of ultratrace mercury ions (Hg2+) by using CH3NH3PbBr3 perovskite quantum dots (QDs) based on the surface ion-exchange mechanism. The synthesized CH3NH3PbBr3 QDs can emitt intense green fluorescence with high quantum yield of 50.28%, and can be applied for Hg2+ sensing with the detection limit of 0.124 nM (24.87 ppt) in the range of 0 nM-100 nM. Furthermore, the interfering metal ions have no any influence on the fluorescence intensity of QDs, showing the perovskite QDs possess the high selectivity and sensitivity for Hg2+ detection. The sensing mechanism of perovskite QDs for Hg2+ is has also been investigated by XPS, EDX studies, showing Pb2+ on the surface of perovskite QDs has been partially replaced by Hg2+. Spot plate test shows that the perovskite QDs can also be used for visual detection of Hg2+. Our research indicated the perovskite QDs are promising candidates for the visual fluorescence detection of environmental micropollutants.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 173: 578-583, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27776312

RESUMEN

The phosphorescent l-cysteine modified manganese-doped zinc sulfide quantum dots (l-cys-MnZnS QDs) was developed for a highly sensitive detection of permanganate anions (MnO4-). l-cys-MnZnS QDs, which were easily synthesized in aqueous media using safe and low-cost materials, can emit intense phosphorescence even though the solution was not deoxygenated. However, the phosphorescence of l-cys-Mn-ZnS QDs was strongly quenched by MnO4- ascribed to the oxidation of l-cys and the increase of surface defects on l-cys-MnZnS QDs. Under the optimal conditions, l-cys-MnZnS QDs offer high selectivity over other anions for MnO4- determination, and good linear Stern-Volmer equation was obtained for MnO4- in the range of 0.5-100µM with a detection limit down to 0.24µM. The developed method was finally applied to the detection of MnO4- in water samples, and the spike-recoveries fell in the range of 95-106%.

4.
Nanoscale ; 4(23): 7358-61, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23100113

RESUMEN

Here we report a silver nanoparticle based surface enhanced resonance Raman scattering (SERRS) probe for the ultrasensitive and selective detection of formaldehyde. The detection limit reaches as low as 10(-11) M.

5.
Nanoscale ; 4(21): 6835-40, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23023220

RESUMEN

Direct fabrication of core-shell or yolk-shell functional nanomaterials via a facile template-free method remains a challenge. In this work, we present a novel approach that involves straightforward chemical transformation and thermal treatment of the infinite coordination polymer particles to obtain composition-tunable CeO(2) yolk-shell structures. Uniform CeO(2) yolk-shell hollow spheres with a high surface area are promising support materials for tiny gold nanoparticles (ca. 4 nm), forming Au-CeO(2) nanocomposites which exhibit a remarkable catalytic activity and high stability for the reduction of p-nitrophenol. A possible mechanism for the formation of CeO(2) yolk-shell microspheres is also proposed.


Asunto(s)
Cerio/química , Oro/química , Nanopartículas del Metal/química , Nitrofenoles/química , Catálisis , Nanocompuestos/química , Oxidación-Reducción , Polímeros/química , Propiedades de Superficie
6.
Nanoscale ; 4(2): 576-84, 2012 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-22143193

RESUMEN

N-doped TiO(2) nanoparticles modified with carbon (denoted N-TiO(2)/C) were successfully prepared by a facile one-pot hydrothermal treatment in the presence of L-lysine, which acts as a ligand to control the nanocrystal growth and as a source of nitrogen and carbon. As-prepared nanocomposites were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), electron paramagnetic resonance (EPR) spectra, and N(2) adsorption-desorption analysis. The photocatalytic activities of the as-prepared photocatalysts were measured by the degradation of methyl orange (MO) under visible light irradiation at λ≥ 400 nm. The results show that N-TiO(2)/C nanocomposites increase absorption in the visible light region and exhibit a higher photocatalytic activity than pure TiO(2), commercial P25 and previously reported N-doped TiO(2) photocatalysts. We have demonstrated that the nitrogen was doped into the lattice and the carbon species were modified on the surface of the photocatalysts. N-doping narrows the band gap and C-modification enhances the visible light harvesting and accelerates the separation of the photo-generated electrons and holes. As a consequence, the photocatalytic activity is significantly improved. The molar ratio of L-lysine/TiCl(4) and the pH of the hydrothermal reaction solution are important factors affecting the photocatalytic activity of the N-TiO(2)/C; the optimum molar ratio of L-lysine/TiCl(4) is 8 and the optimum pH is ca. 4, at which the catalyst exhibits the highest reactivity. Our findings demonstrate that the as-obtained N-TiO(2)/C photocatalyst is a better and more promising candidate than well studied N-doped TiO(2) alternatives as visible light photocatalysts for potential applications in environmental purification.


Asunto(s)
Compuestos Azo/química , Carbono/química , Nanoestructuras/química , Nanoestructuras/efectos de la radiación , Titanio/química , Compuestos Azo/efectos de la radiación , Catálisis , Calor , Luz , Sustancias Macromoleculares/química , Sustancias Macromoleculares/efectos de la radiación , Ensayo de Materiales , Conformación Molecular/efectos de la radiación , Nanoestructuras/ultraestructura , Tamaño de la Partícula , Propiedades de Superficie/efectos de la radiación , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...