Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725843

RESUMEN

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteína HMGA1a , Inhibidores mTOR , Proteína Proto-Oncogénica c-ets-1 , Humanos , Línea Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteína 1A de Unión a Tacrolimus/genética , Animales , Sirolimus/farmacología , Sirolimus/uso terapéutico , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Ratones , Ratones Desnudos
2.
Cell Commun Signal ; 22(1): 157, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429625

RESUMEN

BACKGROUND: O-GlcNAcylation modification affects multiple physiological and pathophysiolocal functions of cells. Altered O-GlcNAcylation was reported to participate in antivirus response. Stimulator of interferon genes (STING) is an adaptor mediating DNA virus-induced innate immune response. Whether STING is able to be modified by O-GlcNAcylation and how O-GlcNAcylation affects STING-mediated anti-DNA virus response remain unknown. METHODS: Metabolomics analysis was used for detecting metabolic alterations in HSV-1 infection cells. Succinylated wheat germ agglutinin (sWGA), co-immunoprecipitation, and pull-down assay were employed for determining O-GlcNAcylation. Mutagenesis PCR was applied for the generation of STING mutants. WT and Sting1-/- C57BL/6 mice (KOCMP-72512-Sting1-B6NVA) were infected with HSV-1 and treated with O-GlcNAcylation inhibitor for validating the role of STING O-GlcNAcylation in antiviral response. RESULTS: STING was functionally activated by O-GlcNAcylation in host cells challenged with HSV-1. We demonstrated that this signaling event was initiated by virus infection-enhanced hexosamine biosynthesis pathway (HBP). HSV-1 (or viral DNA mimics) promotes glucose metabolism of host cells with a marked increase in HBP, which provides donor glucosamine for O-GlcNAcylation. STING was O-GlcNAcylated on threonine 229, which led to lysine 63-linked ubiquitination of STING and activation of antiviral immune responses. Mutation of STING T229 to alanine abrogated STING activation and reduced HSV-1 stimulated production of interferon (IFN). Application of 6-diazo-5-oxonorleucine (DON), an agent that blocks the production of UDP-GlcNAc and inhibits O-GlcNAcylation, markedly attenuated the removal of HSV-1 in wild type C57BL/6 mice, leading to an increased viral retention, elevated infiltration of inflammatory cells, and worsened tissue damages to those displayed in STING gene knockout mice. Together, our data suggest that STING is O-GlcNAcylated in HSV-1, which is crucial for an effective antiviral innate immune response. CONCLUSION: HSV-1 infection activates the generation of UDP-Glc-NAc by upregulating the HBP metabolism. Elevated UDP-Glc-NAc promotes the O-GlcNAcylation of STING, which mediates the anti-viral function of STING. Targeting O-GlcNAcylation of STING could be a useful strategy for antiviral innate immunity.


Asunto(s)
Herpesvirus Humano 1 , Proteínas de la Membrana , Animales , Ratones , Herpesvirus Humano 1/metabolismo , Inmunidad Innata , Interferones , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Uridina Difosfato
3.
Mucosal Immunol ; 17(2): 211-225, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38331094

RESUMEN

Allergic conjunctivitis (AC), an allergen-induced ocular inflammatory disease, primarily involves mast cells (MCs) and eosinophils. The role of neuroimmune mechanisms in AC, however, remains to be elucidated. We investigated the effects of transient receptor potential vanilloid 1 (TRPV1)-positive sensory nerve ablation (using resiniferatoxin) and TRPV1 blockade (using Acetamide, N-[4-[[6-[4-(trifluoromethyl)phenyl]-4-pyrimidinyl]oxy]-2-benzothiazolyl] (AMG-517)) on ovalbumin-induced conjunctival allergic inflammation in mice. The results showed an exacerbation of allergic inflammation as evidenced by increased inflammatory gene expression, MC degranulation, tumor necrosis factor-α production by MCs, eosinophil infiltration and activation, and C-C motif chemokine 11 (CCL11) (eotaxin-1) expression in fibroblasts. Subsequent findings demonstrated that TRPV1+ sensory nerves secrete somatostatin (SST), which binds to SST receptor 5 (SSTR5) on MCs and conjunctival fibroblasts. SST effectively inhibited tumor necrosis factor-α production in MCs and CCL11 expression in fibroblasts, thereby reducing eosinophil infiltration and alleviating AC symptoms, including eyelid swelling, lacrimation, conjunctival chemosis, and redness. These findings suggest that targeting TRPV1+ sensory nerve-mediated SST-SSTR5 signaling could be a promising therapeutic strategy for AC, offering insights into neuroimmune mechanisms and potential targeted treatments.


Asunto(s)
Antineoplásicos , Conjuntivitis Alérgica , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Conjuntiva/metabolismo , Conjuntiva/patología , Eosinófilos , Antineoplásicos/efectos adversos , Inflamación/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
4.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279208

RESUMEN

The lacrimal gland is responsible for maintaining the health of the ocular surface through the production of tears. However, our understanding of the immune system within the lacrimal gland is currently limited. Therefore, in this study, we utilized single-cell RNA sequencing and bioinformatic analysis to identify and analyze immune cells and molecules present in the lacrimal glands of normal mice. A total of 34,891 cells were obtained from the lacrimal glands of mice and classified into 18 distinct cell clusters using Seurat clustering. Within these cell populations, 26 different immune cell subpopulations were identified, including T cells, innate lymphocytes, macrophages, mast cells, dendritic cells, and B cells. Network analysis revealed complex cell-cell interactions between these immune cells, with particularly significant interactions observed among T cells, macrophages, plasma cells, and dendritic cells. Interestingly, T cells were found to be the main source of ligands for the Thy1 signaling pathway, while M2 macrophages were identified as the primary target of this pathway. Moreover, some of these immune cells were validated using immunohistological techniques. Collectively, these findings highlight the abundance and interactions of immune cells and provide valuable insights into the complexity of the lacrimal gland immune system and its relevance to associated diseases.


Asunto(s)
Aparato Lagrimal , Aparato Lagrimal/patología , Lágrimas/metabolismo , Linfocitos T , Linfocitos , ARN/metabolismo
5.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(6): 659-663, 2023 Nov 30.
Artículo en Chino | MEDLINE | ID: mdl-38086724

RESUMEN

Indocyanine green (ICG) is the most commonly used near-infrared fluorescent (NIRF) dye in clinical practice, and its mediated near-infrared fluorescence imaging technology is gradually applied in clinical practice. It has shown great potential in invasive surgery (MIS) and is expected to become the standard technology for surgical diagnosis and treatment of diseases. The clinical application of ICG fluorescence laparoscopy is reviewed here.


Asunto(s)
Verde de Indocianina , Laparoscopía , Fluorescencia , Colorantes
6.
Front Microbiol ; 14: 1278479, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38156008

RESUMEN

Background: Emerging evidence reveals that SARS-CoV-2 possesses the capability to disrupt the gastrointestinal (GI) homeostasis, resulting in the long-term symptoms such as loss of appetite, diarrhea, gastroesophageal reflux, and nausea. In the current review, we summarized recent reports regarding the long-term effects of COVID-19 (long COVID) on the gastrointestine. Objective: To provide a narrative review of abundant clinical evidence regarding the development and management of long-term GI symptoms in COVID-19 patients. Results: Long-term persistent digestive symptoms are exhibited in a majority of long-COVID patients. SARS-CoV-2 infection of intestinal epithelial cells, cytokine storm, gut dysbiosis, therapeutic drugs, psychological factors and exacerbation of primary underlying diseases lead to long-term GI symptoms in COVID-19 patients. Interventions like probiotics, prebiotics, fecal microbiota transplantation, and antibiotics are proved to be beneficial in preserving intestinal microecological homeostasis and alleviating GI symptoms. Conclusion: Timely diagnosis and treatment of GI symptoms in long-COVID patients hold great significance as they may contribute to the mitigation of severe conditions and ultimately lead to the improvement of outcomes of the patients.

9.
Plant Biotechnol J ; 20(5): 903-919, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34978131

RESUMEN

SUMOylation is involved in various aspects of plant biology, including drought stress. However, the relationship between SUMOylation and drought stress tolerance is complex; whether SUMOylation has a crosstalk with ubiquitination in response to drought stress remains largely unclear. In this study, we found that both increased and decreased SUMOylation led to increased survival of apple (Malus × domestica) under drought stress: both transgenic MdSUMO2A overexpressing (OE) plants and MdSUMO2 RNAi plants exhibited enhanced drought tolerance. We further confirmed that MdDREB2A is one of the MdSUMO2 targets. Both transgenic MdDREB2A OE and MdDREB2AK192R OE plants (which lacked the key site of SUMOylation by MdSUMO2A) were more drought tolerant than wild-type plants. However, MdDREB2AK192R OE plants had a much higher survival rate than MdDREB2A OE plants. We further showed SUMOylated MdDREB2A was conjugated with ubiquitin by MdRNF4 under drought stress, thereby triggering its protein degradation. In addition, MdRNF4 RNAi plants were more tolerant to drought stress. These results revealed the molecular mechanisms that underlie the relationship of SUMOylation with drought tolerance and provided evidence for the tight control of MdDREB2A accumulation under drought stress mediated by SUMOylation and ubiquitination.


Asunto(s)
Malus , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Sumoilación
10.
World J Clin Cases ; 9(31): 9376-9385, 2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34877273

RESUMEN

Colorectal cancer has the second highest incidence of malignant tumors and is the fourth leading cause of cancer deaths in China. Early diagnosis and treatment of colorectal cancer will lead to an improvement in the 5-year survival rate, which will reduce medical costs. The current diagnostic methods for early colorectal cancer include excreta, blood, endoscopy, and computer-aided endoscopy. In this paper, research on image analysis and prediction of colorectal cancer lesions based on deep learning is reviewed with the goal of providing a reference for the early diagnosis of colorectal cancer lesions by combining computer technology, 3D modeling, 5G remote technology, endoscopic robot technology, and surgical navigation technology. The findings will supplement the research and provide insights to improve the cure rate and reduce the mortality of colorectal cancer.

11.
Oncol Lett ; 16(3): 3215-3222, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30127917

RESUMEN

The aim of the present study was to investigate the value of systemic [18F]fluorodeoxyglucose positron emission tomography (PET)/computed tomography (CT) in the diagnosis and differential diagnosis of aplastic anemia (AA). Systemic PET/CT imaging results of 24 patients diagnosed with AA in The First Affiliated Hospital of Sun Yat-Sen University between May 2011 and August 2014 were retrospectively analyzed and compared with results from healthy individuals and patients with acute leukemia (AL) or myelodysplastic syndrome (MDS) in the same period to summarize the PET/CT characteristics of patients with AA. Systemic PET/CT manifestations of the 24 patients with AA were classified into three types: Normal bone marrow metabolism, hypometabolism and hypometabolism complicated by focal hyperproliferation. Focal hyperproliferation was frequently identified in the vertebral body, breast bones and iliac bones. Bone marrow maximum standardized uptake values (SUV) of AA were associated, to certain extents, with the degree of proliferation and the bone marrow T/B cell ratio. The overall bone marrow SUV of AA were lower compared with those of healthy individuals and AL or patients with MDS, indicating hypometabolism. Considering the T/B cell ratio, systemic PET/CT manifestations of patients with AA are able to predict treatment responses to certain degrees. Systemic PET/CT is highly valuable in the diagnosis and differential diagnosis of AA, and may also indicate treatment responses.

12.
Chin J Integr Med ; 24(2): 109-116, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28578487

RESUMEN

OBJECTIVE: To investigate the effect of gambogic acid (GA) on the growth and cell death of castrate resistant prostate cancer (PC) with phosphate and tension homology (PTEN) and p53 genes deleted in vitro and ex vivo, and elucidate the underlying possible molecular mechanisms. METHODS: PTEN-/-/p53-/- PC cells and Los Angeles prostate cancer-4 (LAPC-4) cells were treated with GA for 24 h and 48 h, then cell viability was determined by cell proliferation assay. PTEN-/-/p53-/- PC cells organoids number was calculated under GA treatment for 1 week. In addition, cell titer glo assay was performed to analyze 3 dimensional cell viability of patients derived xenografts (PDX) 170.2 organoids. Flow cytometry was used to detect apoptotic cells treated with GA. And confocal image was performed to detect the apoptotic mitochondrial morphological changes. Apoptotic cell death related protein levels were measured through Western blot (WB) in GA treated cells and organoids. The expression levels of mitogen-activated protein kinases (MAPKs) pathway related ribonucleic acid (RNAs) and proteins were analyzed by reverse transcription polymerase chain reaction (RT-PCR) and WB, respectively. RESULTS: The treatment of GA significantly reduced cell viability of PTEN-/-/p53-/- PC cells and LAPC-4 in a time- and concentration-dependent manner. In organoids, GA showed strong inhibition towards organoids' numbers and diameters and continuously led to a complete organoids inhibition with GA 150 nmol/L. Ex vivo results validated that GA 1 µmol/L inhibited 44.6% PDX170.2 organoids growth. As for mechanism, flow cytometry detected continuously increased apoptotic portion under GA treatment from 1.98% to 11.78% (6 h) and 29.94% (8 h, P<0.05). In addition, mitochondrial fragmentation emerged in GA treated cells indicated the mitochondrial apoptotic pathway might be involved. Furthermore, WB detected caspases-3, -9 activation and light chain (LC)-3 conversion with GA treatment. WB revealed decreased activity of MAPK pathway and down-regulation of downstream c-fos oncogene RNA level was detected by RT-PCR before undergoing apoptosis (P<0.05). CONCLUSION: GA was a potent anti-tumor compound as for PTEN-/-/p53-/- PC, which contributed to cell apoptosis via inhibition of the MAPK pathway and c-fos.


Asunto(s)
Apoptosis/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfohidrolasa PTEN/deficiencia , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Proteína p53 Supresora de Tumor/deficiencia , Xantonas/farmacología , Animales , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Humanos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Organoides/efectos de los fármacos , Organoides/patología , Fosfohidrolasa PTEN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Xantonas/química
13.
Chin J Integr Med ; 23(10): 733-739, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27796823

RESUMEN

OBJECTIVE: To determine whether additional Chinese medicine (CM) could prolong survival and improve the quality of life (QOL) in patients with advanced non-small cell lung cancer (NSCLC) compared with Western medicine (WM) alone. METHODS: This was a multicenter, prospective cohort study. A total of 474 hospitalized patients with stage III-IV NSCLC were recruited and divided into 2 groups. Patients in the WM group received radiotherapy, chemotherapy, and optimal supportive therapy according to the National Comprehensive Cancer Network (NCCN) guidelines. In the integrative medicine (IM) group, individualized CM (Chinese patent medicines and injections) and WM were administered. The primary end point was overall survival, and the secondary end points were time to disease progression, adverse events, and QOL. Follow-up clinical examinations and chest radiography were performed every 2 months. RESULTS: The median survival was 16.60 months in the IM group and 13.13 months in the WM group (P<0.01). The incidences of loss of appetite, nausea, and vomiting in the IM group were significantly lower than those in the WM group (P<0.05). The QOL based on Functional Assessment of Cancer Therapy-Lung in the IM group was markedly higher than that in the WM group at the fourth course (P<0.05). CONCLUSIONS: Additional CM may prolong survival and improve the QOL patients with NSCLC. The adverse effects of radio- and chemotherapy may be attenuated as CM is used in combination with conventional treatments.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Medicamentos Herbarios Chinos/efectos adversos , Humanos , Medicina Integrativa , Persona de Mediana Edad , Análisis Multivariante , Estadificación de Neoplasias , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Calidad de Vida , Análisis de Supervivencia , Resultado del Tratamiento
14.
Cell Biochem Biophys ; 74(3): 365-71, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27557951

RESUMEN

Hereditary spherocytosis is an inherited red blood cell membrane disorder resulting from mutations of genes encoding erythrocyte membrane and cytoskeletal proteins. Few equipments can observe the structural characteristics of hereditary spherocytosis directly expect for atomic force microscopy In our study, we proved atomic force microscopy is a powerful and sensitive instrument to describe the characteristics of hereditary spherocytosis. Erythrocytes from hereditary spherocytosis patients were small spheroidal, lacking a well-organized lattice on the cell membrane, with smaller cell surface particles and had reduced valley to peak distance and average cell membrane roughness vs. those from healthy individuals. These observations indicated defects in the certain cell membrane structural proteins such as α- and ß-spectrin, ankyrin, etc. Until now, splenectomy is still the most effective treatment for symptoms relief for hereditary spherocytosis. In this study, we further solved the mysteries of membrane nanostructure changes of erythrocytes before and after splenectomy in hereditary spherocytosis by atomic force microscopy. After splenectomy, the cells were larger, but still spheroidal-shaped. The membrane ultrastructure was disorganized and characterized by a reduced surface particle size and lower than normal Ra values. These observations indicated that although splenectomy can effectively relieve the symptoms of hereditary spherocytosis, it has little effect on correction of cytoskeletal membrane defects of hereditary spherocytosis. We concluded that atomic force microscopy is a powerful tool to investigate the pathophysiological mechanisms of hereditary spherocytosis and to monitor treatment efficacy in clinical practices. To the best of our knowledge, this is the first report to study hereditary spherocytosis with atomic force microscopy and offers important mechanistic insight into the underlying role of splenectomy.


Asunto(s)
Membrana Eritrocítica/ultraestructura , Eritrocitos/metabolismo , Nanoestructuras/química , Esferocitosis Hereditaria/cirugía , Adulto , Membrana Eritrocítica/metabolismo , Femenino , Humanos , Masculino , Microscopía de Fuerza Atómica , Esferocitosis Hereditaria/metabolismo , Esferocitosis Hereditaria/patología , Esplenectomía , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA