RESUMEN
Turmeric is widely used worldwide, and there are many examples of its use in treating hepatobiliary diseases. The gut-liver axis is a bidirectional relationship between gut microorganisms and the liver that is closely related to the pathogenesis of hepatobiliary diseases. This review systematically summarizes the components of turmeric. It links the studies on turmeric affecting gut microorganisms to its effects on liver and biliary diseases to explain the potential mechanism of turmeric's regulation of the gut-liver axis. Besides, ethnopharmacology, phytochemicals, and clinical adverse events associated with turmeric have been researched. Furthermore, turmeric is a safe agent with good clinical efficacy and without apparent toxicity at a certain amount. By summarizing the influence of turmeric on the liver by regulating the gut-liver axis, especially the gut microbiota, it provides a preclinical basis for using turmeric as a safe and effective therapeutic agent for the prevention and treatment of hepatobiliary diseases based on the gut-liver axis. However, more efforts should be made to exploit its clinical application further.
Asunto(s)
Curcuma , Enfermedades del Sistema Digestivo , Humanos , Curcuma/química , Hígado , Enfermedades del Sistema Digestivo/tratamiento farmacológico , Enfermedades del Sistema Digestivo/patologíaRESUMEN
BACKGROUND: Hepatobiliary disease currently serves as an urgent health issue in public due to health-modulating factors such as extension of life expectancy, increasingly sedentary lifestyles and over-nutrition. A definite treatment remains lacking owing to different stages of the disease itself and its intricate pathogenesis. Traditional Chinese medicine (TCM) has been gradually popularized in clinic with the satisfactory efficacy and good safety. Curcumae Rhizoma (called E Zhu, EZ in Chinese) is a representative herb, which has been used to treat hepatobiliary disease for thousands of years. PURPOSE: To systematically summarize the recent research advances on the pharmacological activities of EZ and its constituents, explain the underlying mechanisms of preventing and treating hepatobiliary diseases, and assess the shortcomings of existing work. Besides, ethnopharmacology, phytochemicals, and toxicology of EZ have been researched. METHODS: The information about EZ was collected from various sources including classic books about Chinese herbal medicine, and scientific databases including Web of Science, PubMed, ScienceDirect, Springer, ACS, SCOPUS, CNKI, CSTJ, and WANFANG using keywords given below and terms like pharmacological and phytochemical details of this plant. RESULTS: The chemical constituents isolated and identified from EZ, such as terpenoids including ß-elemene, furanodiene, germacrone, etc. and curcuminoids including curcumin, demethoxycurcumin, bisdemethoxycurcumin, etc. prove to have hepatoprotective effect, anti-liver fibrotic effect, anti-fatty liver effect, anti-liver neoplastic effect, and cholagogic effect through TGF-ß1/Smad, JNK1/2-ROS, NF-κB and other anti-inflammatory and antioxidant signaling pathways. Also, EZ is often combined with other Chinese herbs in the treatment of hepatobiliary diseases with good clinical efficacy and no obvious adverse reactions. CONCLUSION: It provides a preclinical basis for the efficacy of EZ as an effective therapeutic agent for the prevention and treatment of hepatobiliary diseases. Even so, the further studies still needed to alleviate hepatotoxicity and expand clinical application.
Asunto(s)
Enfermedades del Sistema Digestivo , Medicamentos Herbarios Chinos , Enfermedades del Sistema Digestivo/inducido químicamente , Enfermedades del Sistema Digestivo/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Etnofarmacología , Humanos , Medicina Tradicional China , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , RizomaRESUMEN
Liver fibrosis, caused by multiple chronic liver injuries, is a known contributor to cirrhosis and even liver cancer. As a Traditional Chinese Medicine (TCM), Rhizoma curcumae has been extensively used in the treatment of liver fibrosis with satisfying therapeutic effects; however, its mechanism is unclear. The essential oil is the main bioactive component. The purpose of this study was to investigate the chemical profile and the pharmacological mechanisms of the essential oil of Rhizoma curcumae (EORC) against liver fibrosis by combining network pharmacology and transcriptomic technologies. A total of 37 active compounds were identified using the GC/MS system and literature mining, and the corresponding putative targets were predicted. Then, network pharmacology method was applied to identify the 168 candidate targets of EORC-alleviated liver fibrosis. String database and Cytoscape software were used to build the herb-compound-target network and protein-protein interactions (PPIs) network. Functional and pathway enrichment analysis indicated that EORC significantly influenced TGF-ß1/Smads and PI3K/AKT pathways. Experimentally, we verified that EORC attenuated the severity and pathological changes during liver fibrosis progression based on the CCl4-induced liver fibrosis rat model. Transcriptomic technologies demonstrated that EORC ameliorated liver fibrosis partially by regulating the TGF-ß1/Smads and PI3K/AKT pathways. In addition, the effect of vinegar-processed EORC was more significant than that of the raw one. Therefore, EORC can alleviate the severity of liver fibrosis through mechanisms predicted by network pharmacology and provide a basis for the further understanding of the application of EORC in the treatment of liver fibrosis.
Asunto(s)
Curcuma/química , Medicamentos Herbarios Chinos/farmacología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Ácido Acético , Animales , Peso Corporal/efectos de los fármacos , Colágeno/metabolismo , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Masculino , Aceites Volátiles/química , Fosfatidilinositol 3-Quinasa/metabolismo , Aceites de Plantas/química , Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Rizoma/química , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Cancer is a fatal disease with high mortality and low survival rate worldwide. At present, there is still no known cure for most cancers. Traditional Chinese medicine (TCM) represents a noteworthy reservoir for anticancer agents in drug discovery and development. Curcumae Rhizoma (called Ezhu in Chinese) is widely prescribed in TCM for anticancer therapy owing to its broad-spectrum antineoplastic activities. Especially, the terpenoids isolated from the essential oil of Curcumae Rhizoma form an integral part of cancer research and are well established as a potential anticancer agent. For example, ß-elemene has been developed into a new drug for the treatment of solid tumors in China, and is currently undergoing clinical trials in the United States. The review aims to systematically summarize the recent advances on the anticancer effects and related molecular mechanisms of Curcumae Rhizoma, and its terpenoids (ß-elemene, Furanodiene, Furanodienone, Germacrone, Curcumol, Curdione). In addition, we evaluated and compared the anticancer efficacy and clinical use of the terpenoids with combination therapies and traditional therapies. Therefore, this review provides sufficient evidence for the anticancer therapeutic potential of Curcumae Rhizoma and its terpenoids, and will contribute to the development of potential anticancer drugs.