RESUMEN
Achieving high selectivity towards hydrobenzoin (HB) from photocatalytic carbon-carbon (C-C) coupling reaction of benzyl alcohol (BzOH) remains a challenge due to side competing reactions and subsequent conversions of HB into its derivatives. In this study, we have developed a high-performance CdS-based photocatalyst for synthesizing HB with precisely controlled surface properties and structure, achieving high selectivity for HB synthesis. We employed strategies such as cysteamine passivation and Pt deposition to address issues related to photogenerated charge trapping and recombination, thereby enhancing the photocatalytic capability of CdS. With optimized Pt/CdS NSs as the photocatalyst, we investigated the impact of the Pt/CdS heterostructure on intermediate reactions, which in turn altered product selectivity. Specifically, excessive Pt suppresses the electron-induced benzaldehyde-to-intermediate reaction by consuming electrons for the competing hydrogen evolution reaction (HER), leading to high selectivity toward benzaldehyde. In contrast, bare CdS without Pt suffers from insufficient charge supply for BzOH conversion due to the charge recombination issue, which promotes the subsequent conversion of HB to its derivatives. Notably, when Pt is precisely loaded to avoid dominant HER competition, the overall reaction rate increases, maintaining high selectivity towards HB and ensuring faster conversion of BzOH to HB rather than subsequent conversions of HB into its derivatives, thereby maximizing the HB yield. Subsequently, we have developed a photocatalyst that achieves a 93.4% conversion of 0.24 mmol BzOH with 85.3% selectivity toward HB under solar simulator irradiation (AM 1.5G). This work is expected to offer instructive guidance on rationally designing the photocatalyst for efficient C-C coupling reactions.
RESUMEN
Diabetic calcific tendinopathy is the leading cause of chronic pain, mobility restriction, and tendon rupture in patients with diabetes. Tendon stem/progenitor cells (TSPCs) have been implicated in the development of diabetic calcified tendinopathy, but the molecular mechanisms remain unclear. This study found that diabetic tendons have a hyperoxic environment, characterized by increased oxygen delivery channels and carriers. In hyperoxic environment, TSPCs showed enhanced osteogenic differentiation and increased levels of reactive oxygen species (ROS). Additionally, hypoxia-inducible factor-1a (HIF-1a), a protein involved in regulating cellular responses to hyperoxia, was decreased in TSPCs by the ubiquitin-proteasome system. By intervening with antioxidant N-acetyl-L-cysteine (NAC) and overexpressing HIF-1a, we discovered that blocking the ROS/HIF-1a signalling axis significantly inhibited the osteogenic differentiation ability of TSPCs. Animal experiments further confirmed that hyperoxic environment could cause calcification in the Achilles tendon tissue of rats, while NAC intervention prevented calcification. These findings demonstrate that hyperoxia in diabetic tendons promotes osteogenic differentiation of TSPCs through the ROS/HIF-1a signalling axis. This study provides a new theoretical basis and research target for preventing and treating diabetic calcified tendinopathy.
Asunto(s)
Diferenciación Celular , Diabetes Mellitus Experimental , Subunidad alfa del Factor 1 Inducible por Hipoxia , Osteogénesis , Especies Reactivas de Oxígeno , Transducción de Señal , Células Madre , Tendones , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo , Células Madre/citología , Ratas , Tendones/metabolismo , Tendones/patología , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Ratas Sprague-Dawley , Hiperoxia/metabolismo , Acetilcisteína/farmacologíaRESUMEN
Dihydroxyaluminum aminoacetate, heavy magnesium carbonate, and aspirin tablets is a new combined aspirin preparation, each containing aspirin (81 mg), dihydroxyaluminum aminoacetate (11 mg), and heavy magnesium carbonate (22 mg). This study was conducted to evaluate the pharmacokinetic (PK) and bioequivalence in healthy Chinese subjects. This randomized, open-label, single-dose, 2-sequence, and 2-period crossover study included 78 healthy volunteers (fasting, n = 36; postprandial, n = 42). Blood samples were collected for PK analysis. Aspirin and salicylic acid concentrations in human plasma were determined by liquid chromatography-tandem mass spectrometry. Safety and tolerability were monitored. There were no significant differences between the test and reference formulations in maximum plasma concentration, area under the plasma concentration-time curve (AUC) from time 0 to time t, or AUC from time 0 to infinity. The 90% confidence intervals of the test and reference formulations of maximum plasma concentration, AUC from time 0 to time t, and AUC from time 0 to infinity were within the acceptable range (80%-125%) under fasting and postprandial conditions. All adverse events were mild and no serious adverse events were observed in the study. Both compounds were well tolerated in healthy Chinese volunteers.
Asunto(s)
Hidróxido de Aluminio , Aspirina , Ayuno , Magnesio , Periodo Posprandial , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Área Bajo la Curva , Aspirina/administración & dosificación , Aspirina/farmacocinética , China , Estudios Cruzados , Combinación de Medicamentos , Pueblos del Este de Asia , Voluntarios Sanos , Magnesio/farmacocinética , Magnesio/sangre , Magnesio/administración & dosificación , Comprimidos , Equivalencia Terapéutica , Hidróxido de Aluminio/administración & dosificación , Hidróxido de Aluminio/farmacocinética , Glicina/análogos & derivadosRESUMEN
BACKGROUND AND OBJECTIVE: Venlafaxine hydrochloride extended-release (ER) capsules are commonly used to treat depression and anxiety disorders. Evaluation of the bioequivalence of generic formulations with reference products is essential to ensure therapeutic equivalence. The objective of this study was to evaluate the bioequivalence, safety, and tolerability of Chinese-manufactured venlafaxine hydrochloride extended-release capsules compared with USA-manufactured EFFEXOR® XR in healthy Chinese volunteers under fed conditions. METHODS: A randomized, open-label, single-dose, crossover study was conducted. Subjects were randomly assigned to receive the test formulation (one 150-mg ER capsule manufactured in China) or the reference formulation (one 150-mg ER capsule manufactured in the USA). The bioequivalence of the two drugs was assessed using the area under the plasma concentration-time curve from time zero to the last sampling time (AUC0-t) and the maximum observed concentration (Cmax). RESULTS: A total of 28 subjects were enrolled and randomly assigned to receive a single dose of either the test or reference capsule. All the subjects completed the study and were included in the pharmacokinetic (PK) and safety analyses. The mean AUC0-t and Cmax of venlafaxine and its active metabolite O-desmethylvenlafaxine were comparable between the test and reference products with both parameters close to 100% and the corresponding 90% confidence intervals within the specified 80-125% bioequivalence boundary. Safety was also assessed between the two products and all adverse events (AEs) in this study were mild in severity. CONCLUSIONS: Both the test and reference venlafaxine hydrochloride ER capsules were bioequivalent and showed a similar safety and tolerability profile in the population studied. CLINICAL TRIALS REGISTRATION: This study was registered at the Drug Clinical Trial Registration and Information Publicity Platform ( http://www.chinadrugtrials.org.cn/index.html ) with registration number CTR20211243, date: June 1, 2021.
Asunto(s)
Cápsulas , Estudios Cruzados , Preparaciones de Acción Retardada , Voluntarios Sanos , Equivalencia Terapéutica , Clorhidrato de Venlafaxina , Humanos , Clorhidrato de Venlafaxina/farmacocinética , Clorhidrato de Venlafaxina/administración & dosificación , Clorhidrato de Venlafaxina/efectos adversos , Masculino , Adulto , Preparaciones de Acción Retardada/farmacocinética , Femenino , Adulto Joven , Área Bajo la Curva , Medicamentos Genéricos/farmacocinética , Medicamentos Genéricos/administración & dosificación , Medicamentos Genéricos/efectos adversos , China , Persona de Mediana Edad , Pueblos del Este de AsiaRESUMEN
Candesartan is an antihypertensive agent that acts on an angiotensin II receptor. Candesartan cilexetil is a prodrug that is converted into the active form of candesartan during intestinal absorption. This study aimed to assess the pharmacokinetics and bioequivalence of a reference and a test formulation of candesartan cilexetil tablets in healthy Chinese volunteers. A randomized, open-label, single-dose, crossover study was conducted with two treatment periods. Forty-eight healthy Chinese volunteers participated under fasted conditions. Qualified subjects were randomly divided into two groups (1:1 ratio) to receive either the test or reference formulation first. A washout period of 14 days separated the administration of the two formulations. Blood samples were collected at specific time points and analyzed for candesartan concentration using Ultra High-Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS). The maximum concentration (Cmax), the AUC from time zero to the last measured time point (AUC0-t) and the AUC from time zero to infinity (AUC0-∞) fell within the bioequivalence range of 80% to 125%. These results suggest that the test and reference formulations of candesartan cilexetil tablets are bioequivalent, meaning they have similar rates and extents of absorption in healthy Chinese volunteers. No serious adverse events or side effects were reported throughout the study.
RESUMEN
Owing to the tissue characteristics of tendons with few blood vessels and cells, the regeneration and repair of injured tendons can present a considerable challenge, which considerably affects the motor function of limbs and leads to serious physical and mental pain, along with an economic burden on patients. Herein, we designed and fabricated a dipeptide hydrogel (DPH) using polypeptides P11-4 and P11-8. This hydrogel exhibited self-assembly characteristics and could be administered in vitro. To endow the hydrogel with differentiation and regeneration abilities, we added different concentrations of growth differentiation factor 5 (GDF5) to form GDF5@DPH. GDF5@DPH promoted the aggregation and differentiation of tendon stem/progenitor cells and promoted the regeneration and repair of tendon cells and collagen fibers in injured areas. In addition, GDF5@DPH inhibited inflammatory reactions in the injured area. Owing to its injectable properties, DPH can jointly inhibit adhesion and scar hyperplasia between tissues caused by endogenous inflammation and exogenous surgery and can provide a favorable internal environment for the regeneration and repair of the injured area. Overall, the GDF5@DPH system exhibits considerable promise as a novel approach to treating tendon injury.
RESUMEN
Rapeseed is a significant global source of plant oil. Silique size, particularly silique length (SL), impacts rapeseed yield. SL is a typical quantitative trait controlled by multiple genes. In our previous study, we constructed a DH population of 178 families known as the 158A-SGDH population. In this study, through SL QTL mapping, we identified twenty-six QTL for SL across five replicates in two environments. A QTL meta-analysis revealed eight consensus QTL, including two major QTL: cqSL.A02-1 (11.32-16.44% of PVE for SL), and cqSL.C06-1 (10.90-11.95% of PVE for SL). Based on biparental resequencing data and microcollinearity analysis of target regions in Brassica napus and Arabidopsis, we identified 11 candidate genes at cqSL.A02-1 and 6 candidate genes at cqSL.C06-1, which are potentially associated with silique development. Furthermore, transcriptome analysis of silique valves from both parents on the 14th, 21st, and 28th days after pollination (DAP) combined with gene function annotation revealed three significantly differentially expressed genes at cqSL.A02-1, BnaA02G0058500ZS, BnaA02G0060100ZS, and BnaA02G0060900ZS. Only the gene BnaC06G0283800ZS showed significant differences in parental transcription at cqSL.C06-1. Two tightly linked insertion-deletion markers for the cqSL.A02-1 and cqSL.C06-1 loci were developed. Using these two QTL, we generated four combinations: A02SGDH284C06158A, A02SGDH284C06SGDH284, A02158AC06158A, and A02158AC06SGDH284. Subsequent analysis identified an ideal QTL combination, A02158AC06SGDH284, which exhibited the longest SL of this type, reaching 6.06 ± 0.10 cm, significantly surpassing the other three combinations. The results will provide the basis for the cloning of SL-related genes of rapeseed, along with the development of functional markers of target genes and the breeding of rapeseed varieties. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01464-x.
RESUMEN
Pathogen detection is growing in importance in the early stages of bacterial infection and treatment due to the significant morbidity and mortality associated with bloodstream infections. Although various diagnostic approaches for pathogen detection have been proposed, most of them are time-consuming, with insufficient sensitivity and limited specificity and multiplexing capability for clinical use. Here, we report a force-encoding DNA nanomachine for simultaneous and high-throughput detection of multiple pathogens in blood through force-induced remnant magnetization spectroscopy (FIRMS). The force-encoding DNA nanomachines coupled with DNA walkers enable analytical sensitivity down to a single bacterium via a cascade signal amplification strategy. More importantly, it allows for rapid and specific profiling of various pathogens directly in blood samples, without being affected by factors such as light color and solution properties. We expect that this magnetic sensing platform holds great promise for various applications in biomedical research and clinical diagnostics.
Asunto(s)
Infecciones Bacterianas , Técnicas Biosensibles , Sepsis , Humanos , ADN , Bacterias/genéticaRESUMEN
Aging can lead to various disorders in organisms and with the escalating impact of population aging, the incidence of age-related diseases is steadily increasing. As a major risk factor for chronic illnesses in humans, the prevention and postponement of aging have become focal points of research among numerous scientists. Aging biomarkers, which mirror molecular alterations at diverse levels in organs, tissues, and cells, can be used to monitor and evaluate biological changes associated with aging. Currently, aging biomarkers are primarily categorized into physiological traits, imaging characteristics, histological features, cellular-level alterations, and molecular-level changes that encompass the secretion of aging-related factors. However, in the context of the musculoskeletal soft tissue system, aging-related biological indicators primarily involve microscopic parameters at the cellular and molecular levels, resulting in inconvenience and uncertainty in the assessment of musculoskeletal soft tissue aging. To identify convenient and effective indicators, we conducted a comprehensive literature review to investigate the correlation between ectopic mineralization and age-related changes in the musculoskeletal soft tissue system. Here, we introduce the concept of ectopic mineralization as a macroscopic, reliable, and convenient biomarker for musculoskeletal soft tissue aging and present novel targets and strategies for the future management of age-related musculoskeletal soft tissue disorders.
Asunto(s)
Calcinosis , Osificación Heterotópica , Humanos , Anciano , Osteogénesis , Osificación Heterotópica/etiología , Osificación Heterotópica/patología , Envejecimiento , BiomarcadoresRESUMEN
Polyhydroxyalkanoates (PHA) recovery from industrial wastewater has been highlighted as a promising strategy for a circular bioeconomy. However, the high and varying level of nitrogen in wastewater makes enrichment of mixed microbial culture (MMC) low efficiency. In this study, spatial separation of nitrifiers and denitrifiers was adopted by adding biocarriers in MMC and decreasing the sludge retention time (SRT) to accelerate the enrichment of PHA-storing MMC fed by mixed wastewater containing glycerol and propionate. Nitrifiers and denitrifiers were sustained on biocarriers, obtaining a high total inorganic nitrogen removal and allowing a more efficient selective pressure of a high carbon and nitrogen ratio (C/N) under low SRT conditions. The maximum PHA cell content and relative abundance of PHA-storing bacteria were increased to 60.51 % (SRT 6 d) and 49.62 % (SRT 6 d) with the decrease of SRT, respectively. This study demonstrates an efficient way to highly enrich PHA-storing MMC from crude glycerol, which provide a relevant technical support for high-efficiency enrichment of PHA-storing bacteria in low C/N wastewater.
Asunto(s)
Polihidroxialcanoatos , Aguas Residuales , Reactores Biológicos/microbiología , Glicerol , Propionatos , Aguas del Alcantarillado , Bacterias , NitrógenoRESUMEN
BACKGROUND AND PURPOSE: Bladder tumors are among the most prevalent malignancies in the urinary system, and RAC3 has been linked to various types of cancer. This article seeks to explore the potential of RAC3 as both an early diagnostic marker for bladder tumors and a novel therapeutic target. METHODS/PATIENTS: The expression of RAC3 in bladder tissue was detected using immunohistochemical staining. Additionally, the protein expression of RAC3 was measured and quantified through enzyme-linked immunosorbent assay (ELISA). Subsequently, the correlation between the expression level of RAC3 and bladder tumors was investigated through multifactorial analysis and survival analysis. RESULTS: Our findings revealed that RAC3 expression was upregulated in bladder tumor tissues. Moreover, we observed higher levels of RAC3 expression in the serum and urine of patients with bladder tumors compared to those with non-bladder tumors. Additionally, we identified a significant positive correlation between RAC3 expression levels and the stage, degree of differentiation, and infiltration of bladder tumors. Importantly, high RAC3 expression emerged as an influential factor in the poor prognosis of bladder tumors, as patients with high RAC3 expression exhibited a lower overall survival rate than those with low RAC3 expression. CONCLUSION: Based on our results, RAC3 shows promise as both a marker for early diagnosis of bladder tumors and a potential therapeutic target.
Asunto(s)
Detección Precoz del Cáncer , Neoplasias de la Vejiga Urinaria , Humanos , Pronóstico , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/patología , Vejiga Urinaria/patología , Biomarcadores de Tumor/orina , Proteínas de Unión al GTP racRESUMEN
OBJECTIVE: To study the value of ICG molecular fluorescence imaging in laparoscopic hepatectomy for PLC. METHODS: CNKI, WD, VIP.com, PM, CL and WOS databases were selected to search for literature on precise and traditional hepatectomy for the treatment of PLC. RESULTS: A total of 33 articles were used, including 3987 patients, 2102 in precision and 1885 in traditional. Meta showed that the operation time of precision was longer, while IBV, HS, PLFI, ALT, TBil, ALB, PCR, PROSIM, RMR and 1-year SR had advantages. CONCLUSION: Hepatectomy with the concept of PS is a safe and effective method of PLC that can reduce the amount of IB, reduce surgery, reduce PC and improve prognosis and quality of life.
Asunto(s)
Laparoscopía , Neoplasias Hepáticas , Humanos , Hepatectomía/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Verde de Indocianina , Calidad de Vida , Laparoscopía/métodos , Imagen Óptica/métodosRESUMEN
Weigh-in-motion (WIM) systems are essential for efficient transportation and monitoring parameters such as vehicle number, speed, and weight to ensure regulatory compliance and enhance road safety. Recently, WIM measurements using the Glass Fiber Reinforced Polymer Fiber Bragg Grating (GFRP-FBG) sensors have shown robustness and effectiveness. However, the accuracy of weight evaluation using the WIM systems based on GFRP-FBG sensors can be significantly influenced by the vehicle-wandering effect, which introduces uncertainties in wheel position determination and weight calculations. This paper assessed the impact of vehicle wandering on the accuracy of a WIM measurement system based on GFRP-FBG sensors by utilizing a new hybrid sensor-camera system that integrates roadside cameras and in-pavement GFRP-FBG sensors. The detailed methodology and framework of the developed hybrid system are introduced, followed by field testing on Highway I-94 in the United States. The field testing results indicate that by using the hybrid system, the wheel load detection accuracy of the WIM system based on GFRP-FBG sensors can be controlled to be a Type I or Type III WIM according to the ASTM 1318E-09 standard, with an average accuracy ranging from 87.83% to 94.65%. At the same time, when the wander distance is less than or equal to 9 cm, the developed WIM system proves to be very cost-effective as it only comprises two GFRP-FBG sensors, one temperature FBG sensor, and one camera. These findings indicate the practical potential to enhance the accuracy of WIM systems based on GFRP-FBG sensors designed for highways for low-coast, reliable, and accurate measurements by addressing vehicle wandering effects.
RESUMEN
The neuroinflammatory responses following ischemic stroke cause irreversible nerve cell death. Cell free-double strand DNA (dsDNA) segments from ischemic tissue debris are engulfed by microglia and sensed by their cyclic GMP-AMP synthase (cGAS), which triggers robust activation of the innate immune stimulator of interferon genes (STING) pathway and initiate the chronic inflammatory cascade. The decomposition of immunogenic dsDNA and inhibition of the innate immune STING are synergistic immunologic targets for ameliorating neuroinflammation. To combine the anti-inflammatory strategies of STING inhibition and dsDNA elimination, we constructed a DNase-mimetic artificial enzyme loaded with C-176. Nanoparticles are self-assembled by amphiphilic copolymers (P[CL35-b-(OEGMA20.7-co-NTAMA14.3)]), C-176, and Ce4+ which is coordinated with nitrilotriacetic acid (NTA) group to form corresponding catalytic structures. Our work developed a new nano-drug that balances the cGAS-STING axis to enhance the therapeutic impact of stroke by combining the DNase-memetic Ce4+ enzyme and STING inhibitor synergistically. In conclusion, it is a novel approach to modulating central nervus system (CNS) inflammatory signaling pathways and improving stroke prognosis.
RESUMEN
Estuarine ecosystems undergo pronounced and intricate changes due to the mixing of freshwater and saltwater. Additionally, urbanization and population growth in estuarine regions result in shifts in the planktonic bacterial community and the accumulation of antibiotic resistance genes (ARGs). The dynamic changes in bacterial communities, environmental factors, and carriage of ARGs from freshwater to seawater, as well as the complex interrelationships among these factors, have yet to be fully elucidated. Here, we conducted a comprehensive study based on metagenomic sequencing and full-length 16S rRNA sequencing, covering the entire Pearl River Estuary (PRE) in Guangdong, China. The abundance and distribution of the bacterial community, ARGs, mobile genetic elements (MGEs), and bacterial virulence factors (VFs) were analyzed on a site-by-site basis through sampling along the salinity gradient in PRE, from upstream to downstream. The structure of the planktonic bacterial community undergoes continuous changes in response to variations in estuarine salinity, with the phyla Proteobacteria and Cyanobacteria being dominant bacterial throughout the entire region. The diversity and abundance of ARGs and MGEs gradually decreased with the direction of water flow. A large number of ARGs were carried by potentially pathogenic bacteria, especially in Alpha-proteobacteria and Beta-proteobacteria. Multi-drug resistance genes have the highest abundance and subtypes in PRE. In addition, ARGs are more linked to some MGEs than to specific bacterial taxa and disseminate mainly by HGT and not by vertical transfer in the bacterial communities. Various environmental factors, such as salinity and nutrient concentrations, have a significantly impact on the community structure and distribution of bacteria. In conclusion, our results represent a valuable resource for further investigating the intricate interplay between environmental factors and anthropogenic disturbances on bacterial community dynamics. Moreover, they contribute to a better understanding of the relative impact of these factors on the dissemination of ARGs.
Asunto(s)
Estuarios , Genes Bacterianos , Ecosistema , Salinidad , ARN Ribosómico 16S/genética , Bacterias/genética , ChinaRESUMEN
Clinical studies have suggested that repeated exposure to anesthesia and surgery at a young age may increase the risk of cognitive impairment. Our previous research has shown that sevoflurane can affect neurogenesis and cognitive function in young animals by altering cyclophilin D (CypD) levels and mitochondrial function. Neural progenitor cells (NPCs) migration is associated with cognitive function in developing brains. However, it is unclear whether sevoflurane can regulate NPCs migration via changes in CypD. To address this question, we treated NPCs harvested from wild-type (WT) and CypD knockout (KO) mice and young WT and CypD KO mice with sevoflurane. We used immunofluorescence staining, wound healing assay, transwell assay, mass spectrometry, and Western blot to assess the effects of sevoflurane on CypD, reactive oxygen species (ROS), doublecortin levels, and NPCs migration. We showed that sevoflurane increased levels of CypD and ROS, decreased levels of doublecortin, and reduced migration of NPCs harvested from WT mice in vitro and in WT young mice. KO of CypD attenuated these effects, suggesting that a sevoflurane-induced decrease in NPCs migration is dependent on CypD. Our findings have established a system for future studies aimed at exploring the impacts of sevoflurane anesthesia on the impairment of NPCs migration.
Asunto(s)
Ciclofilinas , Células Madre , Ratones , Animales , Peptidil-Prolil Isomerasa F , Sevoflurano/farmacología , Especies Reactivas de Oxígeno , Ratones Noqueados , Proteínas de Dominio DoblecortinaRESUMEN
During the past several years, the COVID-19 pandemic has had pronounced impacts on traffic safety. Existing studies found that the crash frequency was reduced and the severity level was increased during the earlier "Lockdown" period. However, there is a lack of studies investigating its impacts on traffic safety during the later stage of the pandemic. To bridge such a gap, this study selects Salt Lake County, Utah as the study area and employs statistical methods to investigate whether the impact of COVID-19 on traffic safety differs among different stages. Negative binomial models and binary logit models were utilized to study the effects of the pandemic on the crash frequency and severity respectively while accounting for the exposure, environmental, and human factors. Welch's t-test and Pairwise t-test are employed to investigate the possible indirect effect of the pandemic by influencing other non-pandemic-related factors in the statistical models. The results show that the crash frequency is significantly less than that of the pre-pandemic during the whole course of the pandemic. However, it significantly increases during the later stage due to the relaxed restrictions. Crash severity levels were increased during the earlier pandemic due to the increased traffic speed, the prevalence of DUI, reduced use of seat belts, and increased presence of commercial vehicles. It reduced to a level comparable to the pre-pandemic later, owing to the reduction of speed and increased seat-belt-used to the pre-pandemic level. As for the incoming "New Normal" stage, stakeholders may need to take actions to deter DUI and reduce commercial-vehicle-related crashes to improve traffic safety.
Asunto(s)
Accidentes de Tránsito , COVID-19 , Humanos , Accidentes de Tránsito/prevención & control , Seguridad , Utah/epidemiología , Pandemias , COVID-19/epidemiología , COVID-19/prevención & controlRESUMEN
BACKGROUND: As an important component of accelerated rehabilitation surgery, goal-directed fluid therapy (GDT) is one of the optimized fluid therapy strategies and is closely related to perioperative complications and mortality. This article aimed to study the effect of combining plasma colloid osmotic pressure (COP) with stroke volume variation (SVV) as a target for intraoperative GDT for postoperative pulmonary complications in older patients undergoing major abdominal surgery. METHODS: In this study, older patients (n = 100) undergoing radical resection of gastroenteric tumors were randomized to three groups: Group C (n1 = 31) received a conventional infusion regimen, Group S1 (n2 = 34) received GDT based on SVV, and Group S2 (n3 = 35) received GDT based on SVV and COP. The results were recorded, including the lung injury score (LIS); PaO2/FiO2 ratio; lactic acid value at the times of beginning (T0) and 1 h (T1), 2 h (T2), and 3 h (T3) after liquid infusion in the operation room; the total liquid infusion volume; infusion volumes of crystalline and colloidal liquids; urine production rate; pulmonary complications 7 days after surgery; and the severity grading of postoperative pulmonary complications. RESULTS: The patients in the S2 group had fewer postoperative pulmonary complications than those in the C group (P < 0.05) and the proportion of pulmonary complications of grade 1 and higher than grade 2 in S2 group was significantly lower than that in C group (P <0.05); the patients in the S2 group had a higher PaO2/FiO2 ratio than those in the C group (P < 0.05), lower LIS than those in the S1 and C groups (P < 0.05), less total liquid infusion than those in the C group (P < 0.05), and more colloidal fluid infusion than those in the S1 and C groups (P < 0.05). CONCLUSION: The findings of our study show that intraoperative GDT based on COP and SVV can reduce the incidence of pulmonary complications and conducive to shortening the hospital stay in older patients after gastrointestinal surgery. TRIAL REGISTRATION: Chinese Clinical Trial. no. ChiCTR2100045671. Registry at www.chictr.org.cn on April 20, 2021.
Asunto(s)
Abdomen , Objetivos , Humanos , Anciano , Presión Osmótica , Abdomen/cirugía , Complicaciones Posoperatorias/etiología , Fluidoterapia/efectos adversos , ColoidesRESUMEN
The Fenwei Plain (FWP) remains one of the worst PM2.5-polluted regions in China, although its air quality has improved in recent years. To evaluate the regional transport characteristics of PM2.5 emitted by coal-fired power plants in the FWP in wintertime, the primary PM2.5, SO2, and NOx emissions from coal-fired power plants with large units (≥300 MW) in 11 cities of the area in January 2019 were collected based on the Continuous Emission Monitoring System (CEMS). The spatial distribution and source contribution of primary and secondary PM2.5 concentrations were investigated using the Weather Research and Forecast (WRF) model and the California Puff (CALPUFF) model. The results showed that secondary PM2.5 was transported over a larger range than primary PM2.5 and that secondary nitrate was the main component of the total PM2.5 concentration, accounting for more than 70%. High concentrations of primary, secondary, and total PM2.5 mainly occurred in the Shaanxi region of the FWP, especially in Xianyang, where the PM2.5 concentrations were the highest among the 11 cities, even though its pollutant emissions were at moderate levels. The PM2.5 concentrations in Sanmenxia and Yuncheng primarily came from regional transport, accounting for 64% and 68%, respectively, while those in other cities were dominated by local emissions, accounting for more than 63%. The results may help to understand the regional transport characteristics of pollutants emitted from elevated point sources over a complex terrain.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Carbón Mineral , Monitoreo del Ambiente/métodos , China , Ciudades , Centrales EléctricasRESUMEN
Age-related tendon disorder, a primary motor system disease, is characterized by biological changes in the tendon tissue due to senescence and seriously affects the quality of life of the elderly. The pathogenesis of this disease is not well-understood. Tendon stem/progenitor cells (TSPCs) exhibit multi-differentiation capacity. These cells are important cellular components of the tendon because of their roles in tendon tissue homeostasis, remodeling, and repair. Previous studies revealed alterations in the biological characteristics and tenogenic differentiation potential of TSPCs in senescent tendon tissue, in turn contributing to insufficient differentiation of TSPCs into tenocytes. Poor tendon repair can result in age-related tendinopathies. Therefore, targeting of senescent TSPCs may restore the tenogenic differentiation potential of these cells and achieve homeostasis of the tendon tissue to prevent or treat age-related tendinopathy. In this review, we summarize the biological characteristics of TSPCs and histopathological changes in age-related tendinopathy, as well as the potential mechanisms through which TSPCs contribute to senescence. This information may promote further exploration of innovative treatment strategies to rescue TSPCs from senescence.