Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 6): 561-566, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38845726

RESUMEN

The title compound, C12H10N2O3, was obtained by the de-acetyl-ation reaction of 1-(6-amino-5-nitro-naphthalen-2-yl)ethanone in a concentrated sulfuric acid methanol solution. The mol-ecule comprises a naphthalene ring system bearing an acetyl group (C-3), an amino group (C-7), and a nitro group (C-8). In the crystal, the mol-ecules are assembled into a two-dimensional network by N⋯H/H⋯N and O⋯H/H⋯O hydrogen-bonding inter-actions. n-π and π-π stacking inter-actions are the dominant inter-actions in the three-dimensional crystal packing. Hirshfeld surface analysis indicates that the most important contributions are from O⋯H/H⋯O (34.9%), H⋯H (33.7%), and C⋯H/H⋯C (11.0%) contacts. The energies of the frontier mol-ecular orbitals were computed using density functional theory (DFT) calculations at the B3LYP-D3BJ/def2-TZVP level of theory and the LUMO-HOMO energy gap of the mol-ecule is 3.765 eV.

2.
Mater Horiz ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644769

RESUMEN

In the leather manufacturing industry, the management of substantial quantities of solid waste containing chrome shavings remains a formidable challenge. Concurrently, there is a pressing need for the development of pH-universal and economically viable electrocatalysts for the hydrogen evolution reaction (HER). In response to these intertwined challenges, this study proposes an innovative approach wherein the amino groups present on the surface of chrome shavings are utilized to immobilize single ruthenium atoms during pyrolysis, thereby facilitating the synthesis of hydrogen evolution electrocatalysts. The optimized sample, denoted as CN/Cr2O3/Ru-1, demonstrates exceptional electrocatalytic performance, exhibiting an ultra-low overpotential of -28 mV in 1.0 M KOH at a current density of 10 mA cm-2, and it also exhibits good performance in acidic and neutral electrolytes. Importantly, these overpotentials surpass those reported for many previous ruthenium-based catalysts. Density functional theory (DFT) calculations elucidate that both oxygen (O) and chromium (Cr) moieties within Cr2O3 can engage in favorable interactions with the coordination patterns of the ruthenium (Ru) atoms, thereby elucidating the synergistic enhancement conferred by the chromium element in CN/Cr2O3/Ru, which ultimately facilitates and promotes the catalytic activity of the ruthenium atoms serving as the catalytic center. This facile synthesis route not only presents a green solution for addressing waste chromium pollutants but also offers a promising avenue for the development of high-performance, cost-efficient electrocatalysts.

3.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 4): 347-350, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38584727

RESUMEN

The title compound, C14H12N2O4, was obtained from 2-acetyl-6-amino-naphthalene through two-step reactions of acetyl-ation and nitration. The mol-ecule comprises the naphthalene ring system consisting of functional systems bearing a acetyl group (C-2), a nitro group (C-5), and an acetyl-amino group (C-6). In the crystal, the mol-ecules are assembled into two-dimensional sheet-like structures by inter-molecular N-H⋯O and C-H⋯O hydrogen-bonding inter-actions. Hirshfeld surface analysis illustrates that the most important contributions to the crystal packing are from O⋯H/H⋯O (43.7%), H⋯H (31.0%), and C⋯H/H⋯C (8.5%) contacts.

4.
Langmuir ; 40(4): 2198-2209, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38241713

RESUMEN

Understanding the decomposition process of ammonium nitrate (AN) on catalyst surfaces is crucial for the development of practical and efficient catalysts in AN-based propellants. In this study, two types of nano-Fe2O3 catalysts were synthesized: spherical particles with high-exposure (104) facets and flaky particles with high-exposure (110) facets. Through thermal analysis and particle size analysis, it was found that the nanosheet-Fe2O3 catalyst achieved more complete AN decomposition despite having a larger average particle size compared to nanosphere-Fe2O3. Subsequently, the effects of AN pyrolysis on the (110) and (104) facets were investigated by theoretical simulations. Through studying the interaction between AN and crystal facets, it was determined that the electron transfer efficiency on the (110) facet is stronger compared to that on the (104) facet. Additionally, the free-energy step diagrams for the reaction of the AN molecule on the two facets were calculated with the DFT + U method. Comparative analysis led us to conclude that the (110) facet of α-Fe2O3 is more favorable for AN pyrolysis compared to the (104) facet. Our study seeks to deepen the understanding of the mechanism underlying AN pyrolysis and present new ideas for the development of effective catalysts in AN pyrolysis.

5.
Environ Pollut ; 338: 122639, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778487

RESUMEN

Increasing food demand has led to more intensive farming, which threatens our ecosystem and human health due to toxic elements accumulation. This study aimed to estimate the vulnerability of different agricultural systems with unequal high fertilizer input practices regarding toxic element pollution in the greenhouse, kiwifruit orchard, cereal field, and forest/grassland. Soil samples were collected from 181 sites across Shaanxi Province, China, and analyzed for selected characteristics and toxic elements (As, Cd, Cr, Cu, Hg, Pb, and Zn). The contamination factor (CFx) represents the ratio of the measured value of the toxic element in the soil over the soil background values. The CFx values of all the toxic elements were above background values, while Cd and Hg contamination levels were more severe than those of Zn, Cu, As, Cr, and Pb. Kiwifruit orchards and greenhouse soils were contaminated with Cd, Hg, Cu, and Zn, but cereal fields and forest/grassland soils were contaminated with As, Cd, Hg, and Hg. Overall, the cumulative pollution load (PLI) of toxic elements indicated moderate contamination. The cumulative ecological risk (RI) results indicated that greenhouse (178.81) and forest/grassland (156.25) soils were at moderate ecological risks, whereas kiwifruit orchards (120.97) and cereal field (139.72) soils were at low ecological risks. According to a Pearson correlation analysis, Cd, Hg, Cu, and Zn were substantially linked with soil organic matter (SOM), total nitrogen (TN), total phosphorous (TP), and total potassium (TK). The primary sources of toxic elements were phosphate and potash fertilizers, manure, composts, and pesticides in a greenhouse, kiwifruit orchards, and cereal fields, whereas, in forest/grassland soils parent material and atmospheric deposition were the sources identified by positive matrix factorization (PMF). Furthermore, the partial least square structural equation model (PLS-SEM) demonstrated that agriculture inputs largely influenced toxic elements accumulation. We conclude that high fertilizer inputs in greenhouse soils should be considered carefully so that toxic element pollution may be minimized.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Humanos , Suelo/química , Metales Pesados/análisis , Grano Comestible/química , Cadmio/análisis , Ecosistema , Fertilizantes/análisis , Pradera , Plomo/análisis , Monitoreo del Ambiente/métodos , Mercurio/análisis , Bosques , China , Contaminantes del Suelo/análisis , Medición de Riesgo
6.
J Environ Manage ; 346: 119020, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37734212

RESUMEN

Economically sustainable development requires more viable waste recycling solutions. In this context, we address the problem of utilizing chromium-containing sludge, a prevalent and environmentally hazardous waste. Meanwhile, sustainable energy development must develop ecology-friendly and low-cost electrocatalysts for the oxygen evolution reaction (OER) in alkaline media. Herein, we report an ultra-low-cost electrocatalyst from chromium-containing sludge. The optimum preparation conditions are determined by optimizing the calcination temperature and the loading of nickel acetylacetonate. The optimized catalyst delivers excellent stability and outstanding OER activity with overpotentials of 320 mV at 10 mA cm-2 in alkaline media. Density functional theory calculations reveal that the energy barrier of OER is decreased because of the catalyst's heterogeneous structure arrangement and confirm the influence of chromium on performance improvement. The concept of "turning waste into treasure" stimulates the search for methods to process Cr-containing waste and produce low-cost, high-performance electrocatalysts.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122661, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37037175

RESUMEN

Oxidative stress has been reported to be closely associated with many diseases, and an excessive overdose of hypochlorite (ClO-) can also induce stress-related diseases. In this study, we designed and synthesized a NIR probe, named W-1a based on computational analysis of DCM (4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran) derivatives for specific detection of ClO-. The probe exhibited dual fluorescence and colorimetric sensing with a response time of <1 min and a detection limit of 0.15 µM. Additionally, the probe was successfully applied for fluorescence imaging of ClO- at the cellular level and ebrafish endogenous/exogenous ClO- assay and dairy toxicity assessment. Thus, we present a potential method for developing an efficient and reliable detection of ClO- in early stage using near-infrared dyes.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Humanos , Colorantes Fluorescentes/toxicidad , Ácido Hipocloroso/análisis , Células HeLa , Colorimetría/métodos , Imagen Óptica
8.
Int J Biometeorol ; 67(6): 1017-1030, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37072578

RESUMEN

Climate warming may induce growth decline in warm-temperate areas subjected to seasonal soil moisture deficit, whereas increasing atmospheric CO2 concentration (Ca) is expected to enhance tree growth. An accurate understanding of tree growth and physiological processes responding to climate warming and increasing Ca is critical. Here, we analyzed tree-ring stable carbon isotope and wood anatomical traits of Pinus tabuliformis from Qinling Mountains in China to understand how lumen diameter (LD) determining potential hydraulic conductivity and cell-wall thickness (CWT) determining carbon storage responded to climate and Ca. The effects of climate and Ca on intrinsic water-use efficiency (iWUE) were isolated, and iWUE values due to only-climate (iWUEClim) and only-CO2 effects (iWUECO2) were obtained. During a low-iWUE period, the influences of climate on earlywood (EW) LD and latewood (LW) CWT prevailed. During a high-iWUE period, CO2 fertilization promoted cell enlargement and carbon storage but this was counteracted by a negative influence of climate warming. The limiting direct effects of iWUEClim and indirect effects of climate on EW LD were greater than on LW CWT. P. tabuliformis in temperate forests will face a decline of growth and carbon fixation, but will produce embolism-resistant tracheids with narrow lumen responding to future hotter droughts.


Asunto(s)
Agua , Madera , Dióxido de Carbono , Clima , Árboles , Bosques , Carbono , Sequías
9.
Phytochemistry ; 207: 113583, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36623702

RESUMEN

Chemical constituent investigation on the n-BuOH extract of the rhizomes of Tupistra chinensis Baker leads to the isolation of ten compounds including eight undescribed furostanol saponins, tupischinosides A - H, and two known ones. The structures of isolated compounds were determined by extensive spectral analysis and chemical evidences. Interestingly, tupischinosides A and B, C and D, E and F, G and H were identified as four pairs of epimers. The cytotoxicity of tupischinosides A - H against human cancer cell lines U87, SHG44, U251, LN229 and HepG-2 was evaluated by CCK-8 method. As a result, tupischinosides A and C exhibited significant proliferation inhibitory effect on the tested cancer cells. On the contrary, the corresponding epimers, tupischinosides B and D, which only differ in the configuration of C-23 didn't exhibit any cytotoxicity to cancer cells. These results indicated that the stereochemistry of C-23 was crucial to the activity of the compounds.


Asunto(s)
Liliaceae , Saponinas , Humanos , Saponinas/farmacología , Saponinas/química , Rizoma/química , Liliaceae/química , Estructura Molecular , Línea Celular
10.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 6): 642-646, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36072141

RESUMEN

The structure of the title com-pound, C17H20O4 [systematic name: (1aS,3aR,4aS,5aR)-15-(acet-oxy)linden-7(11),8-trieno-12,8-lactone or (4aR,5S,5aR,6aS,6bR)-5-(acet-oxy-meth-yl)-4a,5,5a,6,6a,6b-hexa-hydro-3,6b-di-methyl-cyclo-propa[2,3]indeno-[5,6-b]furan-2(4H)-one, ent-chloranthalactone C], a natural product iso-lated from the whole plant Chloranthus japonicus Sieb., is a typical lin-den-ane-type sesquiterpenoid. The mol-ecule com-prises a bi-cyclo-[3.1.0]hexane ring (A/B system) bearing an acetoxymethyl (C-4) group, a bi-cyclo-[4.3.0]nonane ring (B/C system) containing a double bond (C-8/9) and a chiral quaternary carbon (C-10), and a 7(11)-en-12,8-olide structural moiety on the cyclo-hexan-8-ene (C ring). In the tetra-cyclic skeleton, the 1,3-cyclo-propane ring has a ß-con-figuration, and atoms H-5 and H3-14 have α- and ß-orientations, respectively. In the crystal, the mol-ecules are assembled into a two-dimensional network by weak O⋯H/H⋯O inter-actions. Hirshfeld surface analysis illustrates that the greatest contributions are from H⋯H (55.2%), O⋯H/H⋯O (34.6%) and C⋯H/H⋯C (8.9%) contacts.

11.
J Mol Model ; 28(8): 208, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35789298

RESUMEN

To effectively modify the strong hygroscopicity of ammonium dinitramide (ADN) crystal, the modification of ADN crystal in the 298 K under vacuum environment was studied through theoretical calculation. Three kinds of energetic nitramine molecules (X = RDX, HMX, and CL-20) were inserted into ADN crystal in different proportions (the molecular ratios of ADN to X are 6/1, 12/1, 18/1, and 24/1), to form a total of 12 kinds of designed ADN crystals. The results show that with the modification of ADN crystal with RDX, HMX, and CL-20, the crystal space group, cell parameters, crystal density, and growth morphology will be changed under vacuum conditions. According to the analyses of adsorption heat data, four proportional modification systems all reduced the hygroscopicity of ADN crystal to varying degrees. It is worth noting that the hygroscopicity of modified ADN crystal tends to decrease with the increase of the proportion of doping molecules, but the stability gradually deteriorates, especially 18ADN/1CL-20 and 24ADN/1CL-20. Although they have an excellent anti-moisture effect, from the perspective of crystal energy stability, the actual syntheses of these two kinds of crystal cells are the most difficult. Combined with the energy stability and hygroscopicity analysis, 1HMX/24ADN crystal is a more suitable anti-hygroscopicity modification scheme among the doped ADN crystals. In this case, the isothermal adsorption heat of ADN crystal decreases from 0.692 kcal/mol to 0.573 kcal/mol. The theoretical simulation study of ADN doping modification in a vacuum will provide significant references for ADN modification in the actual situation.

12.
Sci Rep ; 12(1): 8734, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610354

RESUMEN

Lignin, a highly polymerized organic component of plant cells, is one of the most difficult aromatic substances to degrade. Selective biodegradation under mild conditions is a promising method, but the dynamic variations in lignin monomers during the biodegradation of lignocellulose are not fully understood. In this study, we evaluated the differences in lignin degradation under different microbial inoculation based on the lignin monomer content, monomer ratio, and stable hydrogen isotope ratio of lignin methoxy groups (δ2HLM). The weight loss during degradation and the net loss of lignocellulosic components improved dramatically with fungal inoculation. Syringyl monolignol (S-lignin), which contains two methoxy groups, was more difficult to degrade than guaiacyl (G-lignin), which contains only one methoxy group. The co-culture of Pseudomonas mandelii and Aspergillus fumigatus produced the greatest decrease in the G/S ratio, but δ2HLM values did not differ significantly among the three biodegradation experiments, although the enrichment was done within the fungal inoculation. The fluctuation of δ2HLM values during the initial phase of biodegradation may be related to the loss of pectic polysaccharides (another methoxy donor), which mainly originate from fallen leaves. Overall, the relative δ2HLM signals were preserved despite decreasing G/S ratios in the three degradation systems. Nevertheless, some details of lignin δ2HLM as a biomarker for biogeochemical cycles need to be explored further.


Asunto(s)
Hidrógeno , Lignina , Biomasa , Jardines , Hidrógeno/análisis , Isótopos , Lignina/metabolismo
13.
Sci Total Environ ; 809: 151101, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-34688734

RESUMEN

Phthalate pollution in plastic greenhouses (PGs) has aroused concerns. However, mechanisms and factors of vegetables planted in PGs (VPGs) accumulating phthalates from soil and air are unclear. To fill the gap, 19 PGs in Shaanxi, the largest vegetable production province in northwestern China, were selected to probe this issue. 35 soil samples, 48 air samples, and 26 VPG samples were collected in winter and summer. Medians of sum of 7 phthalate concentrations (∑7 PAEs) in PG soil, air, and VPGs were 73.9 µg kg-1, 5300 ng m-3, and 1053 µg kg-1 dry weight, respectively. ∑7 PAE concentrations in PG environmental media in winter were higher than summer, with the significant difference in VPGs. Sum concentrations of bis (2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) accounted for 76.8% and 82.3% of the ∑7 PAEs in soil and VPGs. DnBP and DEHP concentrations in VPGs were significantly correlated to those in air and soil, with correlation coefficients (R) of 0.89 and 0.96 to air and 0.68 and 0.59 to soil. Log-transformed soil-air partition coefficient (log KSA) and fugacity fraction (log ff) of DnBP decreased while log KSA and log ff of DEHP increased from winter to summer, though DnBP in soil volatilized to air while DEHP in air sank to soil within the year. These issues were caused by air temperature changes and the application of plastic films. Furthermore, DnBP concentrations in VPGs were positively correlated to KSA values of DnBP (R = 0.87) while those of DEHP were negative (R = -0.82). Therefore, VPGs could uptake more phthalates from air than from soil, especially for edible parts of leafy and solanaceous VPGs. Applying phthalates free agricultural films and precision management such as adjusting air temperature in PGs could be considered to ensure VPG safeties.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Contaminantes del Suelo , China , Dibutil Ftalato/análisis , Ésteres/análisis , Ácidos Ftálicos/análisis , Plásticos , Suelo , Contaminantes del Suelo/análisis , Verduras
14.
Ying Yong Sheng Tai Xue Bao ; 32(10): 3753-3760, 2021 Oct.
Artículo en Chino | MEDLINE | ID: mdl-34676738

RESUMEN

The primary hydrogen (H) source for all organic compounds in the biosphere is from water, and then participates in biogeochemical cycles through photosynthesis and plant physiological metabolism. As a new proxy of paleoclimate and paleoenvironment, stable hydrogen isotope ratios in wood lignin methoxyl groups (δ2HLM) show great advantages in the studies of paleoclimatic change and have been used to reconstruct precipitation stable hydrogen isotope ratios and paleoclimate signals in many regions. Based on the lignin application mechanism and analysis method of δ2HLM, we evaluated the stability and effectiveness of δ2HLM-measurement method from lignin content and lignin monomer composition, and expounded the tree lignin methoxyl groups' stable isotope proxies of current research outcomes. In the middle latitudes, the tree-ring δ2HLM had great potential in recording temperature signals and precipitation stable hydrogen isotope ratios. However, the study of tree-ring δ2HLM was still in its infancy as evidenced by following reasons: 1) The study area was limited to the middle latitude of the northern hemisphere, and the study subjects were limited to conifer species; 2) To compensate for the limitation of hydrogen isotopic records of nitrocellulose, high resolution tree-ring δ2HLM would be studied; 3) The potential of tree-ring δ2HLM utilization in plant physiology and forest ecology remained to be exploited.


Asunto(s)
Lignina , Árboles , Humanos , Hidrógeno/análisis , Isótopos , Lignina/análisis , Madera/química
15.
Environ Sci Pollut Res Int ; 28(31): 42583-42595, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33813692

RESUMEN

Due to the high cropping index and substantial agricultural inputs in greenhouse vegetable production systems (GVP), the environmental problems caused by heavy metals in GVP are becoming increasingly serious. A systematic investigation of heavy metals accumulation was carried out in GVP located in Jingyang, Shaanxi, China. The accumulation of Cd and Hg was assessed to be more significant than that of other elements in these GVP soils. The pollution load index (PLI) confirmed that 98.9% of the soil samples showed a moderate level of pollution. Additionally, the potential ecological risk index (RI) values indicated that 63.7 and 14.3% of the area was at moderate and high ecological risk, respectively. In assessing the human health risks associated with vegetable consumption, the highest target hazard quotient (THQ) was that for As, followed by Cu > Cd > Zn > Pb > Hg > Cr. Although the hazard index (HI) values were below 1 except for three sample sites in the study area, the 95% quantile of forecasted HI values was 1.22. More attention should be devoted to heavy metal pollution in GVP products. Positive matrix factorization (PMF) was used to identify the sources of the heavy metals. Cu and Zn accumulation were the results of fertilizer overuse; the parent material was the primary source of the As, Pb, and Cr; and the sources of Cd and Hg were inorganic fertilization and industrial emissions, respectively. Effective measures should be implemented to reduce future ecological and health risks in GVP.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Verduras
16.
Sci Total Environ ; 766: 142663, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33153750

RESUMEN

Due to the high cropping index and substantial agricultural inputs in greenhouse cultivation systems (GCS) compared to traditional farming methods, the environmental problems caused by heavy metals in GCS are becoming increasingly serious. The concentration of the heavy metals As, Cd, Cr, Cu, Pb and Zn in soil and food crops were analyzed and assessed in two study areas. There were greater accumulation of heavy metals in soils from Central Shaanxi (CS) than that from Northern Shaanxi (NS). However, heavy metal concentrations in leafy vegetables were higher in NS compared to CS, particularly Cr accumulation in leafy vegetables. Overall, leafy vegetables contained higher concentrations of heavy metals than fresh fruits and fruit vegetables from both areas. The heavy metal transfer factors (TF) for fresh fruits and fruit vegetables were as follows: Cu > Zn > Cd > Cr > As > Pb. However, in leafy vegetables, Cd had a higher TF value than the other metals tested. The target hazard quotient (THQ) values were less than 1 for fruits and vegetables, except for As in leafy vegetables from NS. The THQ values indicated that As contamination was the most serious concern, followed by Cu > Zn > Cd > Pb > Cr in both areas. The soil threshold value (STV) based on THQ showed that the level of As in leafy vegetables grown in alkaline soil was 10.85, which was inferior to the current standards. This study demonstrates the health risks associated with the heavy metal content of fruits and vegetables grown in GCS and suggests that necessary measures should be taken to reduce the accumulation of heavy metals in GCS crops in northwest China.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , China , Monitoreo del Ambiente , Contaminación de Alimentos/análisis , Frutas/química , Metales Pesados/análisis , Medición de Riesgo , Suelo , Contaminantes del Suelo/análisis , Verduras
17.
Sci Total Environ ; 727: 138558, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32498208

RESUMEN

Stable isotopes in wood lignin methoxyl groups (δ2HLM and δ13CLM values) have been suggested as valuable complementary paleoclimate proxies. In permafrost forests, tree growth is influenced by multiple factors, however temperature appears to have the strongest impact on tree growth and, therefore, on carbon cycling. To test whether δ2HLM and δ13CLM values of trees from permafrost regions might record climate parameters, two dominant tree species (Larix gmelinii, larch, and Pinus sylvestris var. mongolica, pine) collected from a permafrost forest in China's Greater Hinggan Mountains, were investigated. The two tree species larch and pine covered time spans of 1940 to 2013 and 1870 to 2013, respectively. Results showed significant correlations of pine and larch δ2HLM values and larch δ13CLM values with temperatures and in particular with the mean temperature of the growing season from April to August. However, only weak correlations of δ2HLM and δ13CLM values with moisture conditions, such as precipitation amount and relative humidity were observed. In addition, species specificity in the climate response was most obvious for δ13CLM values. Compared to a temperature reconstruction based on tree ring width, pine δ2HLM-based reconstruction showed strongest spatial correlations with regional temperature. Therefore, δ2HLM values might be a promising proxy to reconstruct growing-season temperatures in permafrost regions.


Asunto(s)
Hielos Perennes , China , Bosques , Lignina , Temperatura , Árboles , Madera
18.
Nat Prod Res ; 30(21): 2476-82, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27399937

RESUMEN

Two new sesquiterpenes, namely, 1ß,10ß-dihydroxy-eremophil-7(11), 8-dien-12,8-olide (1) and 8,12-epoxy-1ß-hydroxyeudesm-3,7,11-trien-9-one (2), together with three known sesquiterpenoids, shizukolidol (3), 4α-hydroxy-5α(H)-8ß-methoxy-eudesm-7(11)-en-12,8-olide (4), and neolitacumone B (5), and two known monoterpenes, (3R,4S,6R)-p-menth-1-en-3,6-diol (6) and (R)-p-menth-1-en-4,7-diol (7), were isolated from the whole plant of Chloranthus japonicus Sieb. Their structures were elucidated on the basis of spectroscopic data analysis and comparison with those of related known compounds. Compounds 4-7 were isolated from this plant for the first time.


Asunto(s)
Magnoliopsida/química , Sesquiterpenos/aislamiento & purificación , Animales , Artemia/efectos de los fármacos , Medicina Tradicional China , Extractos Vegetales/análisis , Sesquiterpenos/química , Sesquiterpenos/toxicidad
19.
Chirality ; 28(2): 158-63, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26708509

RESUMEN

A novel sesquiterpenoid dimer, named multistalide C (1), together with two known congeners, shizukaols C (2) and D (3), was isolated from the whole plant of Chloranthus japonicus Sieb. The structures of compounds 1-3 were elucidated by extensive HR-ESI-MS, 1D, and 2D NMR spectroscopic analysis. Compounds 1-3 exhibited significant toxic effects on brine shrimp larvae (Artemia salina). The absolute configuration of 1 was established by CD/TDDFT calculations. The related compound chlorahololide A was also reinvestigated. The previous assignment of the absolute configuration of chlorahololide A and several related sesquiterpenoid dimers, based on an incorrect application of the exciton chirality method, is criticized.


Asunto(s)
Magnoliopsida/química , Extractos Vegetales/química , Sesquiterpenos/química , Dicroismo Circular , Dimerización , Espectroscopía de Resonancia Magnética , Estructura Molecular , Extractos Vegetales/aislamiento & purificación , Teoría Cuántica , Estereoisomerismo
20.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 10): o710-1, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26594436

RESUMEN

The title compound (common name: sclaral), C16H28O2, is a sclareolide derivative, which was synthesized from sclareolide itself. In the mol-ecule, the two six-membered rings, A and B, of the labdane skeleton adopt chair conformations and the five-membered O-containing heterocyclic ring C displays an envelope conformation, with the methine C atom of the fused C-C bond as the flap. In the crystal, mol-ecules are linked by O-H⋯O hydrogen bonds, forming chains propagating along [100].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA