Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(20): 13049-13060, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38723037

RESUMEN

Compliant materials are crucial for stretchable electronics. Stretchable solids and gels have limitations in deformability and durability, whereas active liquids struggle to create complex devices. This study presents multifunctional yield-stress fluids as printable ink materials to construct stretchable electronic devices. Ionic nanocomposites comprise silica nanoparticles and ion liquids, while electrical nanocomposites use the natural oxidation of liquid metals to produce gallium oxide nanoflake additives. These nanocomposite inks can be printed on an elastomer substrate and stay in a solid state for easy encapsulation. However, their transition into a liquid state during stretching allows ultrahigh deformability up to the fracture strain of the elastomer. The ionic inks produce strain sensors with high stretchability and temperature sensors with high sensitivity of 7% °C-1. Smart gloves are further created by integrating these sensors with printed electrical interconnects, demonstrating bimodal detection of temperatures and hand gestures. The nanocomposite yield-stress fluids combine the desirable qualities of solids and liquids for stretchable devices and systems.

2.
ACS Sens ; 9(3): 1515-1524, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38447091

RESUMEN

Stretchable sweat sensors are promising technology that can acquire biomolecular insights for health and fitness monitoring by intimate integration with the body. However, current sensors often require microfabricated microfluidic channels to control sweat flow during lab-on-body analysis, which makes effective and affordable sweat sampling a significant practical challenge. Here, we present stretchable and sweat-wicking patches that utilize bioinspired smart wettable membranes for the on-demand manipulation of sweat flow. In a scalable process, the membrane is created by stacking hydrophobic elastomer nanofibers onto soft microfoams with predefined two-dimensional superhydrophobic and superhydrophilic patterns. The engineered heterogeneous wettability distribution allows these porous membranes to achieve enhanced extraction and selective collection of sweat in embedded assays. Despite the simplified architecture, the color reactions between sweat and chemical indicators are inhibited from directly contacting the skin to achieve a largely improved operation safety. The sensing patches can simultaneously quantify pH, urea, and calcium in sweat through digital colorimetric analysis with smartphone images. The construction with all compliant materials renders these patches soft and stretchy to achieve conformal attachment to the skin. Successfully analyzing sweat compositions after physical exercises illustrates the practical suitability of these skin-attachable sensors for health tracking and point-of-care diagnosis.


Asunto(s)
Colorimetría , Sudor , Sudor/química , Acción Capilar , Piel , Biomarcadores/análisis
3.
ACS Nano ; 18(3): 2335-2345, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38189251

RESUMEN

Stretchable sweat sensors have become a personalized wearable platform for continuous, noninvasive health monitoring through conformal integration with the human body. Typically, these devices are coupled with soft microfluidic systems to control sweat flow during advanced analysis processes. However, the implementation of these soft microfluidic devices is limited by their high fabrication costs and the need for skin adhesives to block natural perspiration. To overcome these limitations, a stretchable and smart wettable patch has been proposed for multiplexed in situ perspiration analysis. The patch includes a porous membrane in the form of a patterned microfoam and a nanofiber layer laminate, which extracts sweat selectively from the skin and directs its continuous flow across the device. The integrated electrochemical sensor array measures multiple biomarkers simultaneously such as pH, K+, and Na+. The soft sensing patch comprises compliant materials and structures that allow deformability of up to 50% strain, which enables a stable and seamless interface with the curvilinear human body. During continuous physical exercise, the device has demonstrated a special operating mode by actively accumulating sweat from the skin for multiplex electrochemical analysis of biomarker profiles. The smart wettable membrane provides an affordable solution to address the sampling challenges of in situ perspiration analysis.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Humanos , Sudor/química , Piel , Dispositivos Laboratorio en un Chip
4.
Toxics ; 11(12)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38133412

RESUMEN

Radiation-induced intestinal injury (RIII) is one of the most common intestinal complications caused by radiotherapy for pelvic and abdominal tumors and it seriously affects the quality of life of patients. However, the treatment of acute RIII is essentially symptomatic and nutritional support treatment and an ideal means of prevention and treatment is lacking. Researchers have conducted studies at the cellular and animal levels and found that some chemical or biological agents have good therapeutic effects on RIII and may be used as potential candidates for clinical treatment. This article reviews the injury mechanism and potential treatment strategies based on cellular and animal experiments to provide new ideas for the diagnosis and treatment of RIII in clinical settings.

5.
Biomolecules ; 13(11)2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-38002356

RESUMEN

The gut is the body's largest immune organ, and the intestinal barrier prevents harmful substances such as bacteria and toxins from passing through the gastrointestinal mucosa. Intestinal barrier dysfunction is closely associated with various diseases. However, there are currently no FDA-approved therapies targeting the intestinal epithelial barriers. Long noncoding RNAs (lncRNAs), a class of RNA transcripts with a length of more than 200 nucleotides and no coding capacity, are essential for the development and regulation of a variety of biological processes and diseases. lncRNAs are involved in the intestinal barrier function and homeostasis maintenance. This article reviews the emerging role of lncRNAs in the intestinal barrier and highlights the potential applications of lncRNAs in the treatment of various intestinal diseases by reviewing the literature on cells, animal models, and clinical patients. The aim is to explore potential lncRNAs involved in the intestinal barrier and provide new ideas for the diagnosis and treatment of intestinal barrier damage-associated diseases in the clinical setting.


Asunto(s)
ARN Largo no Codificante , Animales , Humanos , ARN Largo no Codificante/genética , Mucosa Intestinal
6.
BMC Pulm Med ; 23(1): 410, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37891516

RESUMEN

OBJECTIVES: Primary blast lung injury (PBLI) is the main cause of death in blast injury patients, and is often ignored due to the absence of a specific diagnosis. Circular RNAs (circRNAs) are becoming recognized as new regulators of various diseases, but the role of circRNAs in PBLI remain largely unknown. This study aimed to investigate PBLI-related circRNAs and their probable roles as new regulators in PBLI in order to provide new ideas for PBLI diagnosis and treatment. METHODS: The differentially expressed (DE) circRNA and mRNA profiles were screened by transcriptome high-throughput sequencing and validated by quantitative real-time PCR (qRT-PCR). The GO and KEGG pathway enrichment was used to investigate the potential function of DE mRNAs. The interactions between proteins were analyzed using the STRING database and hub genes were identified using the MCODE plugin. Then, Cytoscape software was used to illustrate the circRNA-miRNA-hub gene network. RESULTS: A total of 117 circRNAs and 681 mRNAs were aberrantly expressed in PBLI, including 64 up-regulated and 53 down-regulated circRNAs, and 315 up-regulated and 366 down-regulated mRNAs. GO and KEGG analysis revealed that the DE mRNAs might be involved in the TNF signaling pathway and Fanconi anemia pathway. Hub genes, including Cenpf, Ndc80, Cdk1, Aurkb, Ttk, Aspm, Ccnb1, Kif11, Bub1 and Top2a, were obtained using the MCODE plugin. The network consist of 6 circRNAs (chr18:21008725-21020999 + , chr4:44893533-44895989 + , chr4:56899026-56910247-, chr5:123709382-123719528-, chr9:108528589-108544977 + and chr15:93452117-93465245 +), 7 miRNAs (mmu-miR-3058-5p, mmu-miR-3063-5p, mmu-miR-668-5p, mmu-miR-7038-3p, mmu-miR-761, mmu-miR-7673-5p and mmu-miR-9-5p) and 6 mRNAs (Aspm, Aurkb, Bub1, Cdk1, Cenpf and Top2a). CONCLUSIONS: This study examined a circRNA-miRNA-hub gene regulatory network associated with PBLI and explored the potential functions of circRNAs in the network for the first time. Six circRNAs in the circRNA-miRNA-hub gene regulatory network, including chr18:21008725-21020999 + , chr4:44893533-44895989 + , chr4:56899026-56910247-, chr5:123709382-123719528-, chr9:108528589-108544977 + and chr15:93452117-93465245 + may play an essential role in PBLI.


Asunto(s)
Lesión Pulmonar , MicroARNs , Humanos , Animales , Ratones , ARN Circular/genética , Redes Reguladoras de Genes , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Proteínas del Tejido Nervioso/genética
7.
Front Med (Lausanne) ; 10: 1187557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465640

RESUMEN

Small noncoding RNAs, known as microRNAs (miRNAs), are vital for the regulation of diverse biological processes. miR-223, an evolutionarily conserved anti-inflammatory miRNA expressed in cells of the myeloid lineage, has been implicated in the regulation of monocyte-macrophage differentiation, proinflammatory responses, and the recruitment of neutrophils. The biological functions of this gene are regulated by its expression levels in cells or tissues. In this review, we first outline the regulatory role of miR-223 in granulocytes, macrophages, endothelial cells, epithelial cells and dendritic cells (DCs). Then, we summarize the possible role of miR-223 in chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), coronavirus disease 2019 (COVID-19) and other pulmonary inflammatory diseases to better understand the molecular regulatory networks in pulmonary inflammatory diseases.

8.
ACS Appl Mater Interfaces ; 15(4): 5931-5941, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36688806

RESUMEN

Textile-based light-emitting devices are attracting more and more attention because of their potential applications in smart clothing, human-computer interfaces, safety warnings, entertainment fashion, etc. However, simple and efficient manufacturing of luminescent devices on fabrics even clothing with excellent stretchability and washability remains challenging. Here, a solvent-free thermal lamination process combined with laser engraving has been proposed to fabricate electroluminescent (EL) devices on textiles. All the preprepared components, such as the bottom electrode, the EL layer, and the top transparent electrode, were thermally laminated on the surface of textiles employing thermoplastic polyurethane (TPU) as the binding matrix. The stretchability, luminance, and interface adhesion of the EL devices were systematically studied, showing excellent mechanical durability at high temperature, in humid environments, withstanding repeated machine washing, and resistant to various forms of physical damage. As a demonstration of potential application, textile-based EL devices were fabricated, which could display colored and pixelated patterns as well as dynamic images. The thermal lamination technology developed in this work can potentially enable people to DIY (do it yourself) fabricate light-emitting devices on clothing using daily tools, which could facilitate the widespread use of textile-based wearable displays.

9.
Int J Mol Sci ; 23(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35628354

RESUMEN

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an overactivated inflammatory response caused by direct or indirect injuries that destroy lung parenchymal cells and dramatically reduce lung function. Although some research progress has been made in recent years, the pathogenesis of ALI/ARDS remains unclear due to its heterogeneity and etiology. MicroRNAs (miRNAs), a type of small noncoding RNA, play a vital role in various diseases. In ALI/ARDS, miRNAs can regulate inflammatory and immune responses by targeting specific molecules. Regulation of miRNA expression can reduce damage and promote the recovery of ALI/ARDS. Consequently, miRNAs are considered as potential diagnostic indicators and therapeutic targets of ALI/ARDS. Given that inflammation plays an important role in the pathogenesis of ALI/ARDS, we review the miRNAs involved in the inflammatory process of ALI/ARDS to provide new ideas for the pathogenesis, clinical diagnosis, and treatment of ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda , MicroARNs , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/metabolismo , Humanos , Inflamación/genética , Pulmón/metabolismo , MicroARNs/genética , Síndrome de Dificultad Respiratoria/genética
10.
J Trauma Acute Care Surg ; 93(4): 530-537, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35261371

RESUMEN

BACKGROUND: Primary blast lung injury (PBLI) is a major cause of death in military conflict and terrorist attacks on civilian populations. However, the mechanisms of PBLI are not well understood, and a standardized animal model is urgently needed. This study aimed to establish an animal model of PBLI for laboratory study. METHODS: The animal model of PBLI was established using a self-made mini shock tube simulation device. In brief, mice were randomly divided into two groups: the control group and the model group, the model group were suffered 0.5 bar shock pressures. Mice were sacrificed at 2 hours, 4 hours, 6 hours, 12 hours, and 24 hours after injury. Lung tissue gross observation, hematoxylin and eosin staining and lung pathology scoring were performed to evaluated lung tissue damage. Evans blue dye leakage and bronchoalveolar lavage fluid examination were performed to evaluated pulmonary edema. The relative expression levels of inflammation factors were measured by real-time quantitative polymerase chain reaction and Western blotting analysis. The release of neutrophil extracellular traps was observed by immunofluorescence stain. RESULTS: In the model group, the gross observation and hematoxylin and eosin staining assay showed the inflammatory cell infiltration, intra-alveolar hemorrhage, and damaged lung tissue structure. The Evans blue dye and bronchoalveolar lavage fluid examination revealed that the lung tissue permeability and edema was significantly increased after injury. Real-time quantitative polymerase chain reaction and Western blotting assays showed that IL-1ß, IL-6, TNF-α were upregulated in the model group. Immunofluorescence assay showed that the level of neutrophil extracellular traps in the lung tissue increased significantly in the model group. CONCLUSION: The self-made mini shock tube simulation device can be used to establish the animal model of PBLI successfully. Pathological changes of PBLI mice were characterized by mechanical damage and inflammatory response in lung tissue.


Asunto(s)
Lesión Pulmonar , Animales , Ratones , Modelos Animales de Enfermedad , Eosina Amarillenta-(YS)/metabolismo , Azul de Evans/metabolismo , Hematoxilina/metabolismo , Interleucina-6/metabolismo , Pulmón/patología , Lesión Pulmonar/patología , Factor de Necrosis Tumoral alfa/metabolismo
11.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34681591

RESUMEN

Phosgene (COCl2) was once used as a classic suffocation poison and currently plays an essential role in industrial production. Due to its high toxicity, the problem of poisoning caused by leakage during production, storage, and use cannot be ignored. Phosgene mainly acts on the lungs, causing long-lasting respiratory depression, refractory pulmonary edema, and other related lung injuries, which may cause acute respiratory distress syndrome or even death in severe cases. Due to the high mortality, poor prognosis, and frequent sequelae, targeted therapies for phosgene exposure are needed. However, there is currently no specific antidote for phosgene poisoning. This paper reviews the literature on the mechanism and treatment strategies to explore new ideas for the treatment of phosgene poisoning.


Asunto(s)
Lesión Pulmonar Aguda/terapia , Fosgeno/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Antioxidantes/uso terapéutico , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Oxigenación por Membrana Extracorpórea , Glucocorticoides/uso terapéutico , Trasplante de Células Madre Mesenquimatosas , Estrés Oxidativo/efectos de los fármacos , Pronóstico , Especies Reactivas de Oxígeno/metabolismo
12.
Disaster Med Public Health Prep ; 17: e35, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34462042

RESUMEN

In December 2019, an outbreak of an unknown cause of pneumonia (later named coronavirus disease 2019 [COVID-19]) occurred in Wuhan, China. This was found to be attributed to a novel coronavirus of zoonotic origin, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; previously named 2019 novel coronavirus or 2019-nCoV). The SARS-CoV-2, a new type of highly pathogenic human coronavirus related to severe acute respiratory syndrome coronavirus (SARS-CoV), spread rapidly worldwide and caused 246,303,023 confirmed infections, including 4,994,160 deaths, by October 31, 2021. SARS-CoV-2 and SARS-CoV vary in their specific characteristics, regarding epidemics and pathogenesis. This article focuses on the comparison of the virology, epidemiology, and clinical features of SARS-CoV and SARS-CoV-2 to reveal their common and distinct properties, to provide an up-to-date resource for the development of advanced systems and strategies to monitor and control future epidemics of highly pathogenic human coronaviruses.

13.
Research (Wash D C) ; 2021: 9874939, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34993489

RESUMEN

In contrast to ionically conductive liquids and gels, a new type of yield-stress fluid featuring reversible transitions between solid and liquid states is introduced in this study as a printable, ultrastretchable, and transparent conductor. The fluid is formulated by dispersing silica nanoparticles into the concentrated aqueous electrolyte. The as-printed features show solid-state appearances to allow facile encapsulation with elastomers. The transition into liquid-like behavior upon tensile deformations is the enabler for ultrahigh stretchability up to the fracture strain of the elastomer. Successful integrations of yield-stress fluid electrodes in highly stretchable strain sensors and light-emitting devices illustrate the practical suitability. The yield-stress fluid represents an attractive building block for stretchable electronic devices and systems in terms of giant deformability, high ionic conductivity, excellent optical transmittance, and compatibility with various elastomers.

14.
Dose Response ; 17(2): 1559325819837795, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31040759

RESUMEN

Radiation therapy is one of the most common cancer treatments. It is important to understand how cells respond to ionizing radiation (IR) to improve therapeutic efficacy. Circular RNAs (circRNAs) recently have been found to regulate a variety of cellular processes. However, it is poorly defined that their expression pattern and their identity in cells following IR exposure. Here, we performed high-throughput sequencing and comprehensive analysis of circRNA expression in human embryonic kidney (HEK) 293T cells before and after irradiation. We identified totally 5592 circRNAs and discovered 1038 new circRNAs. We found 158 circRNAs with significantly differential expression after IR exposure. Among them, there were 61 upregulated and 97 downregulated circRNAs. Using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and circRNA-microRNA-messenger RNA network analyses, we found the differentially expressed circRNAs might be involved in the signal pathways of oxidative phosphorylation, epithelial growth factor receptor (EGFR) tyrosine kinase inhibitor resistance, and mammalian target of rapamycin (mTOR) signaling.

15.
J Cell Mol Med ; 22(12): 6357-6367, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30324649

RESUMEN

LncRNAs have been reported to play an important role in various diseases. However, their role in the radiation-induced intestinal injury is unknown. The goal of the present study was to analyse the potential mechanistic role of lncRNAs in the radiation-induced intestinal injury. Mice were divided into two groups: Control (non-irradiated) and irradiated. Irradiated mice were administered 14 Gy of abdominal irradiation (ABI) and were assessed 3.5 days after irradiation. Changes to the jejuna of ABI mice were analysed using RNA-Seq for alterations to both lncRNA and mRNA. These results were validated using qRT-PCR. LncRNAs targets were predicted based on analysis of lncRNAs-miRNAs-mRNAs interaction. 29 007 lncRNAs and 17 142 mRNAs were detected in the two groups. At 3.5 days post-irradiation, 91 lncRNAs and 57 lncRNAs were significantly up- and downregulated respectively. Similarly, 752 mRNAs and 400 mRNAs were significantly up- and downregulated respectively. qRT-PCR was used to verify the altered expression of four lncRNAs (ENSMUST00000173070, AK157361, AK083183, AK038898) and four mRNAs (Mboat1, Nek10, Ccl24, Cyp2c55). Gene ontology and KEGG pathway analyses indicated the predicted genes were mainly involved in the VEGF signalling pathway. This study reveals that the expression of lncRNAs was altered in the jejuna of mice post-irradiation. Moreover, it provides a resource for the study of lncRNAs in the radiation-induced intestinal injury.


Asunto(s)
Yeyuno/efectos de la radiación , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Animales , Regulación de la Expresión Génica/efectos de la radiación , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/efectos de la radiación , Yeyuno/metabolismo , Yeyuno/patología , Ratones , MicroARNs/efectos de la radiación , ARN Largo no Codificante/efectos de la radiación , ARN Mensajero/efectos de la radiación , Radiación , Factor A de Crecimiento Endotelial Vascular/genética
16.
Cell Cycle ; 17(16): 2027-2040, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30160604

RESUMEN

The heterogeneity in human breast cancer poses a challenge for effective treatment. Better understanding of tumor initiation and development will help to resolve this problem. Current models explaining intratumoral diversity include cancer stem cells, clonal evolution and cancer cell dedifferentiation and reprogramming. Herein, a new model, cancer transmission, is proposed to explain cancer heterogeneity. We found breast cancer cells (MCF10A.NeuT) were capable of transforming normal mammary epithelial cells (MCF10A). The transformed cells exhibited cancerous properties including enhanced proliferation and migration, loss of apical-basal polarity and depolarized acini structure associated with epithelial-mesenchymal transition (EMT). The transformed MCF10A cells displayed distinct EMT characteristics compared to parental cells. We further showed that cancer cell-secreted factors were sufficient to induce cancerous transformation of normal cells. Furthermore, transformed cells were resistant to radiation treatment, providing new insights into mechanisms underlying therapeutic resistance.


Asunto(s)
Neoplasias de la Mama/patología , Mama/patología , Transformación Celular Neoplásica/patología , Células Epiteliales/patología , Línea Celular Tumoral , Movimiento Celular/efectos de la radiación , Polaridad Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Transformación Celular Neoplásica/efectos de la radiación , Técnicas de Cocultivo , Citocinas/metabolismo , Células Epiteliales/efectos de la radiación , Transición Epitelial-Mesenquimal/efectos de la radiación , Femenino , Rayos gamma , Humanos , Modelos Biológicos , Receptor ErbB-2/metabolismo
17.
Cell Physiol Biochem ; 47(6): 2558-2568, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29991023

RESUMEN

BACKGROUND/AIMS: Circular RNAs (circRNAs) make up a large class of non-coding RNAs and play important roles in a variety of diseases, including nervous system diseases and cancers. The intestinal epithelium is sensitive to ionizing radiation, radiotherapy of abdominal or pelvic tumors or nuclear accident exposure can lead to high radiation toxicity, which can result in radiation-induced intestinal injury. The goal of this present study was to analyze the potential roles of circRNAs in radiation-induced intestinal injury. METHODS: Mice were divided into two groups: control group and irradiated group. Irradiated group was 3.5 days after 14Gy abdominal irradiation (ABI) group. We started with RNA-seq of circRNA changes in mouse jejuna after radiation and validated by RT-PCR in the following experimental. miRNAs targeted mRNAs were predicted using proprietary software based on target scan and Miranda. The network of circRNA-miRNA-mRNA was illustrated by cytoscape software. RESULTS: 2751 circRNAs were detected in the two groups. At day 3.5 post-radiation, 42 and 48 circRNAs were found to be significantly upregulated and downregulated, respectively, compared to the control (p≤0.05, Fold Change ≥2). Further, the altered expression of 10 circRNAs (chr18: 35610871-35613502+, chr15: 95864225-95894541+, chr3: 96041338-96042928-, chr5: 64096979-64108263+, chr19: 16705875-16710941-, chr5: 134491893-134500149-, chr19: 42562552-42564341+, chr5: 32640331-32664400+, chr3: 72958113-72960367- and chr8: 79343654-79372364-) were verified by RT-PCR. Compared the miRNA-targeted mRNAs with our mRNAs sequencing data, we found 14 upregulated circRNA-targeted mRNAs were also unregulated and 22 downregulated circRNAs-targeted mRNAs were also downregulated. Gene ontology and KEGG pathway analyses indicated the predicted genes were mainly involved in the MAPK signaling pathway. CONCLUSIONS: This study reveals that expression of circRNAs was altered in the jejuna of mice post-irradiation and provides a resource for the study of circRNAs in radiation-induced intestinal injury and repair.


Asunto(s)
Enfermedades del Yeyuno/metabolismo , Yeyuno/metabolismo , Sistema de Señalización de MAP Quinasas , ARN no Traducido/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Animales , Enfermedades del Yeyuno/patología , Yeyuno/patología , Masculino , Ratones , Traumatismos Experimentales por Radiación/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA