Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 177: 116994, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38889638

RESUMEN

BACKGROUND: Myocardial infarction (MI) has emerged as the primary cause of global mortality. Managing blood sugar levels could play a vital role in the treatment of MI. Dapagliflozin (DPG), a commonly used hypoglycemic drug, has demonstrated efficacy in treating heart failure. However, the impact of DPG on MI remains unclear. We aimed to investigate the effects and mechanisms of DPG in relation to MI. METHODS AND RESULTS: DPG administration alleviated MI-induced cardiac dysfunction and myocardial fibrosis. We also found that DPG administration mitigated cardiomyocyte apoptosis through TUNEL staining. CD31 and α-Sma staining revealed that DPG promotes post-MI angiogenesis in mice. In vitro, using scratch assays, transwell assays, and tube formation assays, we discovered that DPG enhanced HUVEC proliferation capacity. Mechanistically, DPG promoted the expression of extracellular matrix genes and mitochondrial function-related genes. Additionally, molecular docking identified the interaction between DPG and PXR, which activated PXR and recruited it to the promoters of Pgam2 and Tcap, promoting their expressions, thus facilitating angiogenesis and post-MI heart repair. CONCLUSIONS: DPG promotes angiogenesis by activating PXR, thereby alleviating cardiac dysfunction and fibrosis after myocardial infarction. This study provides new strategies and targets for the treatment of ischemic disease.

2.
Biochem Biophys Res Commun ; 712-713: 149941, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38643718

RESUMEN

While diosgenin has been demonstrated effective in various cardiovascular diseases, its specific impact on treating heart attacks remains unclear. Our research revealed that diosgenin significantly improved cardiac function in a myocardial infarction (MI) mouse model, reducing cardiac fibrosis and cell apoptosis while promoting angiogenesis. Mechanistically, diosgenin upregulated the Hand2 expression, promoting the proliferation and migration of endothelial cells under hypoxic conditions. Acting as a transcription factor, HAND2 activated the angiogenesis-related gene Aggf1. Conversely, silencing Hand2 inhibited the diosgenin-induced migration of hypoxic endothelial cells and angiogenesis. In summary, these findings provide new insights into the protective role of diosgenin in MI, validating its effect on angiogenic activity and providing a theoretical basis for clinical treatment strategies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diosgenina , Ratones Endogámicos C57BL , Infarto del Miocardio , Neovascularización Fisiológica , Animales , Diosgenina/farmacología , Diosgenina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Neovascularización Fisiológica/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Masculino , Ratones , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Angiogénesis
3.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612535

RESUMEN

Oxidative stress and inflammation play pivotal roles in the progression of deep vein thrombosis (DVT). Fisetin has demonstrated promising pharmacological features; however, its underlying mechanisms in DVT remain elusive. In our study, we investigated the effects and underlying mechanisms of Fisetin on a DVT mouse model. The protective effects of Fisetin on DVT were evaluated by comparing the size of thrombosis and detecting the mRNA expression levels of pro-inflammatory cytokines. After that, the biological processes were studied via transcriptomics after Fisetin administration. The antioxidant effect was evaluated and explained via NRF2 signaling pathway. Finally, the anti-inflammatory effect was explained according to KEGG analysis and the final mechanism was verified via Western blot. Our results found that the mRNA expression levels of pro-inflammatory cytokines were inhibited by Fisetin. Moreover, transcriptomic studies suggested that MAPK signaling pathway may be associated with the anti-inflammatory activity of Fisetin. Then, we confirmed that Fisetin administration significantly inhibited the activation of typical pro-inflammatory signaling pathways via Western blot. Finally, the results of Western blot showed that Fisetin significantly activated NRF2 signaling pathway and induced the expression of downstream antioxidant enzymes. Our findings suggested that Fisetin exhibits potential therapeutic effects on DVT through its ability to attenuate inflammation and oxidative stress. The underlying mechanism may involve the suppression of MAPK-mediated inflammatory signaling pathway and activation of NRF2-mediated antioxidant signaling pathway.


Asunto(s)
Antioxidantes , Flavonoles , Trombosis de la Vena , Animales , Ratones , Factor 2 Relacionado con NF-E2/genética , Transducción de Señal , Estrés Oxidativo , Inflamación/tratamiento farmacológico , Citocinas , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Trombosis de la Vena/tratamiento farmacológico , ARN Mensajero
4.
Adv Sci (Weinh) ; 11(18): e2308970, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38454653

RESUMEN

Alzheimer's disease (AD) is a pressing concern in neurodegenerative research. To address the challenges in AD drug development, especially those targeting Aß, this study uses deep learning and a pharmacological approach to elucidate the potential of pyrroloquinoline quinone (PQQ) as a neuroprotective agent for AD. Using deep learning for a comprehensive molecular dataset, blood-brain barrier (BBB) permeability is predicted and the anti-inflammatory and antioxidative properties of compounds are evaluated. PQQ, identified in the Mediterranean-DASH intervention for a diet that delays neurodegeneration, shows notable BBB permeability and low toxicity. In vivo tests conducted on an Aß1₋42-induced AD mouse model verify the effectiveness of PQQ in reducing cognitive deficits. PQQ modulates genes vital for synapse and anti-neuronal death, reduces reactive oxygen species production, and influences the SIRT1 and CREB pathways, suggesting key molecular mechanisms underlying its neuroprotective effects. This study can serve as a basis for future studies on integrating deep learning with pharmacological research and drug discovery.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Ratones , Cofactor PQQ/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Masculino
5.
iScience ; 27(3): 109067, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38361621

RESUMEN

Orexin is a neuropeptide released from hypothalamus regulating feeding, sleeping, arousal, and cardiovascular activity. Past research has demonstrated that orexin receptor 2 (OX2R) agonist infusion in the brain results in sympathoexcitatory responses. Here, we found that epicardial administration of OX2R agonism leads to opposite responses. We proved that OX2R is expressed mainly in DRG neurons and transported to sensory nerve endings innervating the heart. In a capsaicin-induced cardiac sympathetic afferent reflex (CSAR) model, we recorded the calcium influx in DRG neurons, measured heart rate variability, and examined the PVN c-Fos activity to prove that epicardial OX2R agonism administration could attenuate capsaicin-induced CSAR. We further showed that OX2R agonism could partially rescue acute myocardial infarction by reducing sympathetic overactivation. Our data indicate that epicardial application of OX2R agonist exerts a cardioprotective effect by attenuating CSAR. This OX2R-mediated heart-brain axis may provide therapeutic targets for acute cardiovascular diseases.

6.
PLoS One ; 18(12): e0289966, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38100461

RESUMEN

Abdominal aortic aneurysm (AAA), an extremely dangerous vascular disease with high mortality, causes massive internal bleeding due to aneurysm rupture. To boost the research on AAA, efforts should be taken to organize and link the information about AAA-related genes and their functions. Currently, most researchers screen through genetic databases manually, which is cumbersome and time-consuming. Here, we developed "AAAKB" a manually curated knowledgebase containing genes, SNPs and pathways associated with AAA. In order to facilitate researchers to further explore the mechanism network of AAA, AAAKB provides predicted genes that are potentially associated with AAA. The prediction is based on the protein interaction information of genes collected in the database, and the random forest algorithm (RF) is used to build the prediction model. Some of these predicted genes are differentially expressed in patients with AAA, and some have been reported to play a role in other cardiovascular diseases, illustrating the utility of the knowledgebase in predicting novel genes. Also, AAAKB integrates a protein interaction visualization tool to quickly determine the shortest paths between target proteins. As the first knowledgebase to provide a comprehensive catalog of AAA-related genes, AAAKB will be an ideal research platform for AAA. Database URL: http://www.lqlgroup.cn:3838/AAAKB/.


Asunto(s)
Aneurisma de la Aorta Abdominal , Bases de Datos Genéticas , Humanos , Aneurisma de la Aorta Abdominal/genética
7.
Redox Biol ; 64: 102785, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37343447

RESUMEN

There are no effective therapeutic targets or strategies that simultaneously inhibit tumour growth and promote cardiac function recovery. Here, we analyzed targets for cancer treatments and cardiac repair, with demethylation emerging as a common factor in these candidate lists. As DNA methyltransferase 1 (DNMT1) majorly responds to methylation, a natural compound library is screened, identifying dioscin as a novel agent targeted at DNMT1, widely used for heart diseases. Dioscin was found to reduce DNMT activities and inhibits growth in breast cancer cells. Combined with analyses of RNA-seq and MeDIP-seq, the promoters of antioxidant genes were demethylated after dioscin, recruiting NRF2 and elevating their expression. In Nrf2 knockout mice, the cardiac protection role of dioscin was blocked by Nrf2-loss. Furthermore, in tumour-bearing mice with hypertrophy, dioscin was observed to inhibit tumour growth and alleviate cardiac injury simultaneously. This study is the first to identify dioscin as a novel demethylation agent with dual functions of anti-cancer and cardio-protection.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neoplasias , Ratones , Animales , Recuperación de la Función , Desmetilación , Metilación de ADN
8.
Front Genet ; 13: 846529, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046248

RESUMEN

A 36-year-old male with congenital equinovarus deformity was admitted to the hospital due to worsen deformity. He was known to have ear perforation in childhood. After hospitalization, he received equinovarus correction surgery, fourth toe osteotomy, and external fixation for right foot during the procedure. During his hospital stay, the patient has been treated with multiple gastrointestinal perorations, accompanied with multiple organ dysfunction and fragile soft tissues. During his in-hospital stay, multiple organ dysfunctions were observed, including the heart, kidney, liver, and intestines. In order to identify the mutation site, whole-exome sequencing (WES) was performed, and further verified with Sanger sequencing analysis in this patient. One-site mutation located at CHST14 [c.883_884del, p (Phe295Cysfs*5)] was identified in this patient, whereas this mutation was not observed in other 100 healthy controls. Also, this variant has not been reported in public databases (ExAC and gnomAD). Our report showed that unanticipated multiple tissue deformation observed the musculocontractural EDS patient was caused by mutation located at CHST14 [c.883_884del, p (Phe295Cysfs*5)] induced truncated CHST14 protein.

9.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166497, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35868482

RESUMEN

Sepsis-induced cardiomyopathy (SICM) has a poor prognosis, with no effective therapeutic strategy currently. This study aimed to explore the mechanism underlying SICM and investigate the protective role of the hydrogen sulfide (H2S) donor GYY4137. This study included patients with SICM and animal models of SICM with wild-type and Nlrp3-/- mice, which were treated with or without GYY4137. Echocardiography, ELISA, TUNEL staining, and immunofluorescence were used to investigate phenotypic alterations. Serum levels of H2S and cytokines were measured. Inflammatory cell infiltration in the myocardial tissue was identified using immunohistochemistry and immunofluorescence. RNA expression profiles were identified using RNA sequencing. The protective mechanism of GYY4137 was further validated in the crosstalk between macrophages and cardiomyocytes using immunoblotting, real-time polymerase chain reaction (RT-PCR), and immunofluorescence when conditional medium of macrophages boosted by LPS were co-cultured with cardiomyocytes. Patients and animal models of SICM presented with lower serum H2S levels and heart dysfunction. GYY4137 reduced macrophage infiltration in septic heart tissue. GO analysis suggested that GYY4137 was involved in the inflammatory process. GYY4137 inhibited NLRP3 inflammasome activity in macrophages, reduced the secretion of inflammatory factors, and decreased the production of reactive oxygen species (ROS) in cardiomyocytes, thus exerting protective effects against SICM. We further found that the protective effects of GYY4137 were absent in Nlrp3-knockout models. GYY4137 ameliorates myocardial injury in SICM via the NLRP3 pathway by inhibiting the inflammatory response and reducing the production of myocardial ROS.


Asunto(s)
Cardiomiopatías , Sulfuro de Hidrógeno , Sepsis , Animales , Cardiomiopatías/metabolismo , Citocinas/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Inflamasomas/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Morfolinas , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Compuestos Organotiofosforados , ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo
10.
Biomed Pharmacother ; 153: 113291, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35717783

RESUMEN

Hydroxyurea (HU), a small molecule with various biological properties, was used in myeloproliferative, tumorous, and non-hematological diseases. However, whether HU plays a role in diabetic cardiomyopathy (DCM) remains unclear. Our study aimed to investigated whether HU could ameliorate DCM or not. Induction of type 1 diabetes mellitus (T1DM) in C57BL/6 J mice was achieved by intraperitoneal injection of streptozotocin (STZ). Mice in control and diabetic groups were treated with HU (20 mg/kg) in drinking water for 16 weeks. Our data showed that diabetic mice had significantly increased FBG level and decreased body weight, along with abnormal diastolic function and myocardial fibrosis. Inflammatory factors including TNF-α, IL-1ß, IL-6, ICAM, VCAM, and apoptosis-related proteins including caspase-3 and BAX were significantly up-regulated in heart tissues. HU treatment remarkably improved these changes. Similarly, application of HU (5 µM) significantly improves the survival rate of high glucose (HG)-treated H9C2 cells. Thus, HU rescued the cardiomyocytes via inhibition of apoptosis and inflammation in DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/prevención & control , Hidroxiurea/farmacología , Hidroxiurea/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo
11.
Front Cardiovasc Med ; 9: 783426, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310994

RESUMEN

Myocardial infarction is one of the most severe heart diseases, leading to sudden death. Currently, angiography and stenting are widely performed in clinics, yet more effective treatment is still needed. Herein, we presented that dioscin, a natural product, showed protective effect on infarcted hearts via mitochondrial maintenance. Upon dioscin treatment, cardiac dysfunction was alleviated, and remodeling is prevented. Mechanistically, disocin maintains mitochondria function through the maintenance of Kreb's cycle, and suppresion of ROS accumulation. In this way, by targeting mitochondrial dysfunction, dioscin is a potential drug for infarcted hearts.

13.
Oxid Med Cell Longev ; 2021: 3766919, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34664015

RESUMEN

Myocardial ischemic/reperfusion (MI/R) is a leading cause of cardiovascular disease with high morbidity and mortality. However, the mechanisms underlying pathological reperfusion remain obscure. In this study, we found that dioscin, a natural product, could be a potential candidate for treating MI/R through modulating cardiac dysfunction. Mechanistically, our work revealed that dioscin could suppress the production of reactive oxygen species (ROS) via repressing the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2) and enhancing the expression of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx). These findings indicate that dioscin may be a potential candidate for therapeutic interventions in MI/R injury.


Asunto(s)
Diosgenina/análogos & derivados , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Animales , Diosgenina/farmacología , Diosgenina/uso terapéutico , Humanos , Masculino , Ratones , Especies Reactivas de Oxígeno
14.
Front Nutr ; 8: 754235, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34708067

RESUMEN

Melatonin (N-acetyl-5-methoxytryptamine) has been shown to have a cardioprotective effect against myocarditis. However, the mechanisms underlying the protective role of melatonin (MLT) in sepsis-induced myocarditis are yet to be revealed. In this study, MLT was administrated to mice, 14 days before cecal ligation puncture surgery. Echocardiography results showed that MLT alleviated cardiac dysfunction in sepsis-induced myocarditis. Furthermore, MLT reduced cardiac inflammation by inhibiting the expression of Il-1α, Il-1ß, Il-6, and Mcp-1 messenger RNA (mRNA) levels. The RNA sequencing (RNA-seq) assays with heart tissues showed that MLT maintains the mitochondrial function in sepsis-caused myocarditis. Additionally, the production of reactive oxygen species (ROS) in heart tissues was suppressed by MLT. Taken together, in evaluating the therapeutic effect of MLT on sepsis-induced myocarditis, the results showed that MLT alleviated cardiac damage by regulating mitochondrial function and mitochondrial ROS.

15.
Front Pharmacol ; 12: 697643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539395

RESUMEN

Melatonin (N-acetyl-5-methoxytryptamine; MLT) has been shown to have a renal-protective effect against kidney injury. However, the mechanisms underlying the protective role of MLT in sepsis-induced renal injury are yet to be revealed. In this study, MLT alleviated renal dysfunction with the increase of BUN (blood urea nitrogen) and SCR (serum creatinine) and reduction of fibrosis in the CLP (cecal ligation puncture) model. RNA-seq analysis showed that MLT repressed the oxidant stress in response to kidney injury. Our in vitro study showed that MLT suppresses LPS-induced accumulation of ROS (reactive oxygen species) production via SOD2 downregulation and Nox4 upregulation in HK-2 cells. Furthermore, we found that MLT alleviated the inflammatory response, with the mRNA-level reduction of Il-1α, Il-1ß, Mcp-1, and Tgf-ß1. Taken together, in evaluating the therapeutic effect of MLT on sepsis-induced acute kidney injury, the results showed that MLT alleviated renal damage by regulating the production of ROS.

16.
Aging Cell ; 20(7): e13392, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34081836

RESUMEN

Dioscin has been widely used in clinics for coronary artery disease (CAD) treatment for years in China. However, the underlying mechanism for Dioscin-mediated cardioprotective effect has not been elucidated. Here, we showed that Dioscin significantly rescues the cardiac function in mouse model of myocardial infarction (MI), accompanied by the reduction of cardiac fibrosis and apoptosis, resulting from elevated angiogenesis. Mechanistically, Dioscin promotes the proliferation and migration of hypoxic endothelial cells via the up-regulation of lncRNA MANTIS, which serves as a scaffolding lncRNA within a chromatin remodeling complex. Meanwhile, it enables pol II binding to the transcription start sites, which leads to induced expression of angiogenesis-related genes, including SOX18, SMAD6, and COUP-TFII. Conversely, IncRNA MANTIS silencing prevents Dioscin-induced migration and angiogenesis in hypoxic endothelial cells. Taken together, these data provide new insights that clarifies the cardioprotective effects of Dioscin against myocardial infarcted injury and confirms the effect on angiogenic activity of endothelial cells. This will build a solid theoretical basis for clinical therapeutic strategies.


Asunto(s)
Diosgenina/análogos & derivados , Cardiopatías/genética , Neovascularización Fisiológica/efectos de los fármacos , ARN Largo no Codificante/genética , Animales , Diosgenina/farmacología , Diosgenina/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones
17.
Front Cardiovasc Med ; 8: 785554, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35097005

RESUMEN

Chronic venous disease (CVD) is a progressive inflammatory disease that increases in prevalence with age. Elucidating the underlying molecular mechanism of CVD development is essential for disease prevention and treatment. This study constructed a mouse model of iliac vein stenosis to explore the mechanism of the CVD disease progression, and diosmin was administered as a positive control (as recommended by clinical practice). The mouse model was established successfully with iliac vein stenosis, leading to the expansion of the intercellular space and venous leakage. Conversely, micronized diosmin showed a dose-dependent therapeutic effect for these manifestations. Concerning the mechanism, iliac vein stenosis caused an inflammatory response in veins, while diosmin suppressed this increase. Furthermore, RNA sequencing analysis indicated that diosmin significantly improved muscle function through actin filament organization and muscle contraction. These results indicated that the mouse model of iliac vein stenosis is a reliable model to study venous diseases. Furthermore, the dose-dependent therapeutic effect of diosmin on stenosis (without toxic side-effects) suggests greater protection against venous diseases at higher doses of diosmin.

18.
Mol Ther ; 28(4): 1119-1132, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32061268

RESUMEN

The messenger RNA (mRNA) 3' untranslated regions (3' UTRs), as cis-regulated elements bound by microRNAs (miRNAs), affect their gene translation. However, the role of the trans-regulation of 3' UTRs during heart dysfunction remains elusive. Compared with administration of angiogenic factor with G-patch and forkhead-associate domains 1 (Aggf1), ectopic expression of Aggf1 with its 3' UTR significantly suppressed cardiac dysfunction in angiotensin II-infused mice, with upregulated expression of both Aggf1 and myeloid cell leukemia 1 (Mcl1). Along their 3' UTRs, Mcl1 and Aggf1 mRNAs share binding sites for the same miRNAs, including miR-105, miR-101, and miR-93. We demonstrated that the protein-coding Mcl1 and Aggf1 mRNAs communicate and co-regulate each other's expression through competition for these three miRNAs that target both transcripts via their 3' UTRs. Our results indicate that Aggf1 3' UTR, as a trans-regulatory element, accelerates the cardioprotective role of Aggf1 in response to hypertensive conditions by elevating Mcl1 expression. Our work broadens the scope of gene therapy targets and provides a new insight into gene therapy strategies involving 3' UTRs.


Asunto(s)
Proteínas Angiogénicas/genética , Angiotensina II/efectos adversos , Vectores Genéticos/administración & dosificación , Cardiopatías/prevención & control , MicroARNs/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Miocitos Cardíacos/citología , Regiones no Traducidas 3' , Proteínas Angiogénicas/metabolismo , Animales , Células Cultivadas , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética , Células HEK293 , Cardiopatías/inducido químicamente , Cardiopatías/fisiopatología , Pruebas de Función Cardíaca , Humanos , Masculino , Ratones , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo
19.
Circulation ; 141(12): 984-1000, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-31902237

RESUMEN

BACKGROUND: S-nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in the pathogenesis of cardiovascular disease. The aim of this study was to determine the role of SNO of MLP (muscle LIM protein) in myocardial hypertrophy, as well as the mechanism by which SNO-MLP modulates hypertrophic growth in response to pressure overload. METHODS: Myocardial samples from patients and animal models exhibiting myocardial hypertrophy were examined for SNO-MLP level using biotin-switch methods. SNO sites were further identified through liquid chromatography-tandem mass spectrometry. Denitrosylation of MLP by the mutation of nitrosylation sites or overexpression of S-nitrosoglutathione reductase was used to analyze the contribution of SNO-MLP in myocardial hypertrophy. Downstream effectors of SNO-MLP were screened through mass spectrometry and confirmed by coimmunoprecipitation. Recruitment of TLR3 (Toll-like receptor 3) by SNO-MLP in myocardial hypertrophy was examined in TLR3 small interfering RNA-transfected neonatal rat cardiomyocytes and in a TLR3 knockout mouse model. RESULTS: SNO-MLP level was significantly higher in hypertrophic myocardium from patients and in spontaneously hypertensive rats and mice subjected to transverse aortic constriction. The level of SNO-MLP also increased in angiotensin II- or phenylephrine-treated neonatal rat cardiomyocytes. S-nitrosylated site of MLP at cysteine 79 was identified by liquid chromatography-tandem mass spectrometry and confirmed in neonatal rat cardiomyocytes. Mutation of cysteine 79 significantly reduced hypertrophic growth in angiotensin II- or phenylephrine-treated neonatal rat cardiomyocytes and transverse aortic constriction mice. Reducing SNO-MLP level by overexpression of S-nitrosoglutathione reductase greatly attenuated myocardial hypertrophy. Mechanistically, SNO-MLP stimulated TLR3 binding to MLP in response to hypertrophic stimuli, and disrupted this interaction by downregulating TLR3-attenuated myocardial hypertrophy. SNO-MLP also increased the complex formation between TLR3 and RIP3 (receptor-interacting protein kinase 3). This interaction in turn induced NLRP3 (nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3) inflammasome activation, thereby promoting the development of myocardial hypertrophy. CONCLUSIONS: Our findings revealed a key role of SNO-MLP in myocardial hypertrophy and demonstrated TLR3-mediated RIP3 and NLRP3 inflammasome activation as the downstream signaling pathway, which may represent a therapeutic target for myocardial hypertrophy and heart failure.


Asunto(s)
Cardiomegalia/metabolismo , Inflamasomas/metabolismo , Proteínas con Dominio LIM/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Musculares/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptor Toll-Like 3/metabolismo , Animales , Cardiomegalia/patología , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal
20.
Front Cell Dev Biol ; 8: 593955, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469534

RESUMEN

Myeloid cell leukemia 1 (Mcl1), an abundant protein in the myocardium, plays an essential role in fibrosis and anti-inflammation in cardiomyocytes to prevent heart failure. However, whether Mcl1 3'-untranslated regions (3'-UTR) has the cardio-protecting function remains unclear. Down-regulation of Mcl1 was observed in adult mice heart tissues after Angiotensin II (Ang II) treatment. Consistent with in vivo results, the reduction of Mcl1 expression was identified in Ang II-treated neonatal cardiomyocytes. Mechanistically, Mcl1 3'-UTR prevented Ang II-induced cardiac apoptosis via up-regulation of Mcl1 and an angiogenic factor with a G-patch domain and a forkhead-associated domain 1 (Aggf1), which plays cardiac-protective role. Our work broadens the scope of gene therapy targets and provides a new insight into gene therapy strategies involving mRNAs' 3'-UTRs application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA