Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 630(8015): 214-221, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811726

RESUMEN

The canonical mitotic cell cycle coordinates DNA replication, centriole duplication and cytokinesis to generate two cells from one1. Some cells, such as mammalian trophoblast giant cells, use cell cycle variants like the endocycle to bypass mitosis2. Differentiating multiciliated cells, found in the mammalian airway, brain ventricles and reproductive tract, are post-mitotic but generate hundreds of centrioles, each of which matures into a basal body and nucleates a motile cilium3,4. Several cell cycle regulators have previously been implicated in specific steps of multiciliated cell differentiation5,6. Here we show that differentiating multiciliated cells integrate cell cycle regulators into a new alternative cell cycle, which we refer to as the multiciliation cycle. The multiciliation cycle redeploys many canonical cell cycle regulators, including cyclin-dependent kinases (CDKs) and their cognate cyclins. For example, cyclin D1, CDK4 and CDK6, which are regulators of mitotic G1-to-S progression, are required to initiate multiciliated cell differentiation. The multiciliation cycle amplifies some aspects of the canonical cell cycle, such as centriole synthesis, and blocks others, such as DNA replication. E2F7, a transcriptional regulator of canonical S-to-G2 progression, is expressed at high levels during the multiciliation cycle. In the multiciliation cycle, E2F7 directly dampens the expression of genes encoding DNA replication machinery and terminates the S phase-like gene expression program. Loss of E2F7 causes aberrant acquisition of DNA synthesis in multiciliated cells and dysregulation of multiciliation cycle progression, which disrupts centriole maturation and ciliogenesis. We conclude that multiciliated cells use an alternative cell cycle that orchestrates differentiation instead of controlling proliferation.


Asunto(s)
Ciclo Celular , Diferenciación Celular , Centriolos , Cilios , Cilios/metabolismo , Animales , Centriolos/metabolismo , Ratones , Humanos , Replicación del ADN , Mitosis , Quinasas Ciclina-Dependientes/metabolismo , Femenino , Ciclinas/metabolismo , Masculino
2.
Front Oncol ; 14: 1353580, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425337

RESUMEN

Introduction: The etiology and clinical presentation of vulvar carcinomas, especially vulvar lesions, are not fully understood. Because the vulva and cervix are anatomically connected, human papillomavirus (HPV) is the main cause of cervical lesions. Thus, this study explored the potential characteristics and effects of specific HPV infection types across vulvar lesions and concurrent cervical lesions. Methods: This retrospective, cross-sectional study analyzed patients with cervical HPV or cytological results and concurrent vulvar biopsy who were seen in our hospital colposcopy clinic in Shanxi Province, China, between 2013 and 2023. Data on age, menopause status, vulvar manifestations, and cytology and HPV infection testing results were collected. Attributable fractions and multinominal logistic models were used to evaluate HPV genotyping and clinical characteristics across vulvar lesions. Results: Among the 1,027 participants, 83 (8.1%) had vulvar intraepithelial neoplasia (VIN) of high grade or worse (VIN2+), and 127 (12.4%) had non-neoplastic epithelial disorders of the vulva (NNEDV). A total of 175 patients had either VIN2+ or cervical intraepithelial neoplasia (CIN) lesions of grade 2 or worse (CIN2+). The most common HPV genotypes for VIN2+ or concurrent VIN2+/CIN2+ were HPV16, HPV52, and HPV58, although attributable fractions differed among lesions. Patients with normal cytological or histopathological result were more likely to have NNEDV detected, while abnormal cervical diagnosis was associated with higher detection of VIN2+. Multinominal logistic modeling showed that age and HPV16 infection were risk factors for VIN2+ or concurrent VIN2+/CIN2+; however, only vulvar presentation with depigmentation was a risk factor for NNEDV. Among patients with low-grade CIN1/VIN1, compared with those who were HPV16 negative, those who were HPV16 positive were at 6.63-fold higher risk of VIN2+/CIN2+ [95% confidence interval (CI): 3.32, 13.21]. Vulvar depigmentation was also associated with increased risk of NNEDV (odds ratio: 9.98; 95% CI: 3.02, 33.04). Conclusions: Chinese women may be at specific, high risk for HPV infection types associated with VIN or CIN. The use of cervical cell HPV detection along with vulvar presentation during cervical cancer screening may also contribute to vulvar lesion detection.

3.
J Cell Physiol ; 239(5): e31215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308657

RESUMEN

Primary cilia are distributed extensively within the corneal epithelium and endothelium. However, the presence of cilia in the corneal stroma and the dynamic changes and roles of endothelial and stromal cilia in corneal homeostasis remain largely unknown. Here, we present compelling evidence for the presence of primary cilia in the corneal stroma, both in vivo and in vitro. We also demonstrate dynamic changes of both endothelial and stromal cilia during corneal development. In addition, our data show that cryoinjury triggers dramatic cilium formation in the corneal endothelium and stroma. Furthermore, depletion of cilia in mutant mice lacking intraflagellar transport protein 88 compromises the corneal endothelial capacity to establish the effective tissue barrier, leading to an upregulation of α-smooth muscle actin within the corneal stroma in response to cryoinjury. These observations underscore the essential involvement of corneal endothelial and stromal cilia in maintaining corneal homeostasis and provide an innovative strategy for the treatment of corneal injuries and diseases.


Asunto(s)
Cilios , Sustancia Propia , Endotelio Corneal , Homeostasis , Animales , Ratones , Actinas/metabolismo , Cilios/metabolismo , Lesiones de la Cornea/metabolismo , Lesiones de la Cornea/patología , Lesiones de la Cornea/terapia , Sustancia Propia/citología , Sustancia Propia/crecimiento & desarrollo , Sustancia Propia/metabolismo , Endotelio Corneal/citología , Endotelio Corneal/crecimiento & desarrollo , Endotelio Corneal/metabolismo , Homeostasis/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Supresoras de Tumor/genética , Ciliopatías/metabolismo , Ciliopatías/patología , Ciliopatías/terapia
4.
Methods Cell Biol ; 176: 235-250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37164540

RESUMEN

The ciliary membrane is continuous with the plasma membrane but has distinct lipid and protein composition, which is key to defining the function of the primary cilium. Ciliary membranes dynamically assemble and disassemble in association with the cell cycle and directly transmit signals and molecules through budding membranes. Various imaging approaches have greatly advanced the understanding of the ciliary membrane function. In particular, fluorescence live-cell imaging has revealed important insights into the dynamics of ciliary membrane assembly by monitoring the changes of fluorescent-tagged ciliary proteins. Protein dynamics can be tracked simultaneously using multi-color live cell imaging by coupling ciliary-associated factors with different colored fluorescent tags. Ciliary membrane and membrane associated-proteins such as Smoothened, 5-HTr6, SSTR3, Rab8a, and Arl13b have been used to track ciliary membranes and centriole proteins like Centrin1/2, CEP164, and CEP83 are often used to mark the ciliary basal body. Here, we describe a method for studying ciliogenesis membrane dynamics using spinning disk confocal live-cell imaging.


Asunto(s)
Cilios , Imagen Óptica , Cilios/metabolismo , Membrana Celular/fisiología
5.
EMBO Rep ; 23(4): e52775, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35201641

RESUMEN

Motile cilia on the cell surface generate movement and directional fluid flow that is crucial for various biological processes. Dysfunction of these cilia causes human diseases such as sinopulmonary disease and infertility. Here, we show that Ccdc108, a protein linked to male infertility, has an evolutionarily conserved requirement in motile multiciliation. Using Xenopus laevis embryos, Ccdc108 is shown to be required for the migration and docking of basal bodies to the apical membrane in epidermal multiciliated cells (MCCs). We demonstrate that Ccdc108 interacts with the IFT-B complex, and the ciliation requirement for Ift74 overlaps with Ccdc108 in MCCs. Both Ccdc108 and IFT-B proteins localize to migrating centrioles, basal bodies, and cilia in MCCs. Importantly, Ccdc108 governs the centriolar recruitment of IFT while IFT licenses the targeting of Ccdc108 to the cilium. Moreover, Ccdc108 is required for the centriolar recruitment of Drg1 and activated RhoA, factors that help establish the apical actin network in MCCs. Together, our studies indicate that Ccdc108 and IFT-B complex components cooperate in multiciliogenesis.


Asunto(s)
Cuerpos Basales , Infertilidad Masculina , Proteínas de la Membrana , Proteínas de Unión al ARN , Animales , Cuerpos Basales/metabolismo , Centriolos/metabolismo , Cilios/metabolismo , Proteínas del Citoesqueleto/metabolismo , Humanos , Infertilidad Masculina/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética , Xenopus laevis
6.
Methods Mol Biol ; 2293: 91-103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34453712

RESUMEN

Correlative light and electron microscopy (CLEM) enables determination of high-resolution structural information for proteins of interest within their biological context through the combination of electron and fluorescence microscopies. Numerous electron microscopy (EM) studies of primary cilia have provided ultrastructural details about these antennal-like organelles that extend from the surface of the cell. The core structure of the cilium includes a microtubule-based axoneme, a basal body derived from the mother centriole, and the ciliary membrane, which is connected to the plasma membrane. The small GTPase Rab8 localizes to the ciliary membrane and is important for ciliogenesis, and Rab11 transports the Rab8 guanine nucleotide exchange factor (GEF) Rabin8 to the mother centriole to activate Rab8-dependent ciliary membrane growth. Some primary cilia have a ciliary pocket membrane (CPM) which is observed as an involution from the plasma membrane to the base of the cilia membrane. The Rab11- and Rab8-assocaited membrane trafficking regulator Eps15 Homology Domain-containing protein 1 (EHD1) and EHD3 also function in early stages of ciliogenesis; however, they localize to the CPM. These ciliary localizations of Rab8 and EHD1 can be resolved using CLEM with conventional fluorescence microscopy and transmission electron microscopy (TEM) imaging. Here, we describe in detail the protocol for this CLEM method applicable for ciliary proteins and proteins in other cellular organelles.


Asunto(s)
Cilios , Centriolos/metabolismo , Cilios/metabolismo , Electrones , Factores de Intercambio de Guanina Nucleótido , Microscopía Electrónica , Proteínas de Unión al GTP rab/metabolismo
7.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34241634

RESUMEN

Cells inherit two centrioles, the older of which is uniquely capable of generating a cilium. Using proteomics and superresolved imaging, we identify a module that we term DISCO (distal centriole complex). The DISCO components CEP90, MNR, and OFD1 underlie human ciliopathies. This complex localizes to both distal centrioles and centriolar satellites, proteinaceous granules surrounding centrioles. Cells and mice lacking CEP90 or MNR do not generate cilia, fail to assemble distal appendages, and do not transduce Hedgehog signals. Disrupting the satellite pools does not affect distal appendage assembly, indicating that it is the centriolar populations of MNR and CEP90 that are critical for ciliogenesis. CEP90 recruits the most proximal known distal appendage component, CEP83, to root distal appendage formation, an early step in ciliogenesis. In addition, MNR, but not CEP90, restricts centriolar length by recruiting OFD1. We conclude that DISCO acts at the distal centriole to support ciliogenesis by restraining centriole length and assembling distal appendages, defects in which cause human ciliopathies.


Asunto(s)
Centriolos/metabolismo , Cilios/metabolismo , Ciliopatías/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Centriolos/patología , Centriolos/ultraestructura , Cilios/patología , Cilios/ultraestructura , Ciliopatías/metabolismo , Ciliopatías/patología , Embrión de Mamíferos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Transducción de Señal
8.
Dev Cell ; 56(3): 325-340.e8, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33561422

RESUMEN

Primary cilia are sensory organelles that utilize the compartmentalization of membrane and cytoplasm to communicate signaling events, and yet, how the formation of a cilium is coordinated with reorganization of the cortical membrane and cytoskeleton is unclear. Using polarized epithelia, we find that cortical actin clearing and apical membrane partitioning occur where the centrosome resides at the cell surface prior to ciliation. RAB19, a previously uncharacterized RAB, associates with the RAB-GAP TBC1D4 and the HOPS-tethering complex to coordinate cortical clearing and ciliary membrane growth, which is essential for ciliogenesis. This RAB19-directed pathway is not exclusive to polarized epithelia, as RAB19 loss in nonpolarized cell types blocks ciliogenesis with a docked ciliary vesicle. Remarkably, inhibiting actomyosin contractility can substitute for the function of the RAB19 complex and restore ciliogenesis in knockout cells. Together, this work provides a mechanistic understanding behind a cytoskeletal clearing and membrane partitioning step required for ciliogenesis.


Asunto(s)
Membrana Celular/metabolismo , Cilios/metabolismo , Organogénesis , Proteínas de Unión al GTP rab/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Polaridad Celular , Centrosoma/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas Activadoras de GTPasa , Humanos , Espacio Intracelular/metabolismo , Complejos Multiproteicos/metabolismo , Unión Proteica , Transporte de Proteínas
9.
Biophys Rep ; 7(2): 101-110, 2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37288144

RESUMEN

The cilium was one of the first organelles observed through a microscope. Motile cilia appear as oscillating cell appendages and have long been recognized to function in cell motility. In contrast, the far more widespread non-motile cilia, termed primary cilia, were thought to be vestigial and largely ignored following their initial description over a century ago. Only in the last two decades has the critical function of primary cilia been elucidated. Primary cilia play essential roles in signal transduction, chemical sensation, mechanosensation and light detection. Various microscopy approaches have been important for characterizing the structure, dynamics and function of the cilia. In this review, we discuss the application of live-cell imaging technologies and their contribution to our current understanding of ciliary processes.

10.
J Biol Chem ; 294(42): 15418-15434, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31467083

RESUMEN

The primary cilium is a cellular sensor that detects light, chemicals, and movement and is important for morphogen and growth factor signaling. The small GTPase Rab11-Rab8 cascade is required for ciliogenesis. Rab11 traffics the guanine nucleotide exchange factor (GEF) Rabin8 to the centrosome to activate Rab8, needed for ciliary growth. Rabin8 also requires the transport particle protein complex (TRAPPC) proteins for centrosome recruitment during ciliogenesis. Here, using an MS-based approach for identifying Rabin8-interacting proteins, we identified C7orf43 (also known as microtubule-associated protein 11 (MAP11)) as being required for ciliation both in human cells and zebrafish embryos. We find that C7orf43 directly binds to Rabin8 and that C7orf43 knockdown diminishes Rabin8 preciliary centrosome accumulation. Interestingly, we found that C7orf43 co-sediments with TRAPPII complex subunits and directly interacts with TRAPPC proteins. Our findings establish that C7orf43 is a TRAPPII-specific complex component, referred to here as TRAPPC14. Additionally, we show that TRAPPC14 is dispensable for TRAPPII complex integrity but mediates Rabin8 association with the TRAPPII complex. Finally, we demonstrate that TRAPPC14 interacts with the distal appendage proteins Fas-binding factor 1 (FBF1) and centrosomal protein 83 (CEP83), which we show here are required for GFP-Rabin8 centrosomal accumulation, supporting a role for the TRAPPII complex in tethering preciliary vesicles to the mother centriole during ciliogenesis. In summary, our findings have revealed an uncharacterized TRAPPII-specific component, C7orf43/TRAPPC14, that regulates preciliary trafficking of Rabin8 and ciliogenesis and support previous findings that the TRAPPII complex functions as a membrane tether.


Asunto(s)
Centriolos/metabolismo , Cilios/metabolismo , Vesículas Citoplasmáticas/metabolismo , Quinasas del Centro Germinal/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Centriolos/genética , Cilios/genética , Vesículas Citoplasmáticas/genética , Quinasas del Centro Germinal/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Morfogénesis , Unión Proteica , Pez Cebra
11.
Dev Cell ; 50(2): 229-246.e7, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31204173

RESUMEN

Serum starvation stimulates cilia growth in cultured cells, yet serum factors associated with ciliogenesis are unknown. Previously, we showed that starvation induces rapid Rab11-dependent vesicular trafficking of Rabin8, a Rab8 guanine-nucleotide exchange factor (GEF), to the mother centriole, leading to Rab8 activation and cilium growth. Here, we demonstrate that through the LPA receptor 1 (LPAR1), serum lysophosphatidic acid (LPA) inhibits Rab11a-Rabin8 interaction and ciliogenesis. LPA/LPAR1 regulates ciliogenesis initiation via downstream PI3K/Akt activation, independent of effects on cell cycle. Akt stabilizes Rab11a binding to its effector, WDR44, and a WDR44-pAkt-phosphomimetic mutant blocks ciliogenesis. WDR44 depletion promotes Rabin8 preciliary trafficking and ciliogenesis-initiating events at the mother centriole. Our work suggests disruption of Akt signaling causes a switch from Rab11-WDR44 to the ciliogenic Rab11-FIP3-Rabin8 complex. Finally, we demonstrate that Akt regulates downstream ciliogenesis processes associated with Rab8-dependent cilia growth. Together, this study uncovers a mechanism whereby serum mitogen signaling regulates Rabin8 preciliary trafficking and ciliogenesis initiation.


Asunto(s)
Cilios/fisiología , Regulación de la Expresión Génica , Quinasa I-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Humanos , Quinasa I-kappa B/genética , Fosfatidilinositol 3-Quinasas/genética , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Pez Cebra , Proteínas de Unión al GTP rab/genética
12.
Nat Commun ; 10(1): 919, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30783093

RESUMEN

In the original version of this Article, the fifth sentence of the abstract incorrectly read 'Remarkably, we show that PACSIN1 and EHD1 assemble membrane t7ubules from the developing intracellular cilium that attach to the plasma membrane, creating an extracellular membrane channel (EMC) to the outside of the cell.', and should have read 'Remarkably, we show that PACSIN1 and EHD1 assemble membrane tubules from the developing intracellular cilium that attach to the plasma membrane, creating an extracellular membrane channel (EMC) to the outside of the cell.'. This has been corrected in both the PDF and HTML versions of the Article.

13.
Nat Commun ; 10(1): 428, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30683896

RESUMEN

The intracellular ciliogenesis pathway requires membrane trafficking, fusion, and reorganization. Here, we demonstrate in human cells and zebrafish that the F-BAR domain containing proteins PACSIN1 and -2 play an essential role in ciliogenesis, similar to their binding partner and membrane reorganizer EHD1. In mature cilia, PACSINs and EHDs are dynamically localized to the ciliary pocket membrane (CPM) and transported away from this structure on membrane tubules along with proteins that exit the cilium. PACSINs function early in ciliogenesis at the ciliary vesicle (CV) stage to promote mother centriole to basal body transition. Remarkably, we show that PACSIN1 and EHD1 assemble membrane t7ubules from the developing intracellular cilium that attach to the plasma membrane, creating an extracellular membrane channel (EMC) to the outside of the cell. Together, our work uncovers a function for F-BAR proteins and membrane tubulation in ciliogenesis and explains how the intracellular cilium emerges from the cell.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Cuerpos Basales/metabolismo , Cilios/metabolismo , Células Epiteliales/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Cuerpos Basales/ultraestructura , Transporte Biológico , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Centriolos/metabolismo , Centriolos/ultraestructura , Cilios/ultraestructura , Embrión no Mamífero , Células Epiteliales/ultraestructura , Regulación de la Expresión Génica , Humanos , Fusión de Membrana , Ratones , Células 3T3 NIH , Unión Proteica , Dominios Proteicos , Transducción de Señal , Proteínas de Transporte Vesicular/metabolismo , Pez Cebra
14.
Cell Rep ; 22(1): 189-205, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29298421

RESUMEN

Primary cilia are sensory organelles that protrude from the cell membrane. Defects in the primary cilium cause ciliopathy disorders, with retinal degeneration as a prominent phenotype. Here, we demonstrate that the retinal pigment epithelium (RPE), essential for photoreceptor development and function, requires a functional primary cilium for complete maturation and that RPE maturation defects in ciliopathies precede photoreceptor degeneration. Pharmacologically enhanced ciliogenesis in wild-type induced pluripotent stem cells (iPSC)-RPE leads to fully mature and functional cells. In contrast, ciliopathy patient-derived iPSC-RPE and iPSC-RPE with a knockdown of ciliary-trafficking protein remain immature, with defective apical processes, reduced functionality, and reduced adult-specific gene expression. Proteins of the primary cilium regulate RPE maturation by simultaneously suppressing canonical WNT and activating PKCδ pathways. A similar cilium-dependent maturation pathway exists in lung epithelium. Our results provide insights into ciliopathy-induced retinal degeneration, demonstrate a developmental role for primary cilia in epithelial maturation, and provide a method to mature iPSC epithelial cells for clinical applications.


Asunto(s)
Ciliopatías/metabolismo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Cilios/genética , Cilios/metabolismo , Cilios/patología , Ciliopatías/genética , Ciliopatías/patología , Ciliopatías/terapia , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Ratones Noqueados , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/patología
15.
Cell Rep ; 20(2): 384-396, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28700940

RESUMEN

Mutations in CEP290, a transition zone protein in primary cilia, cause diverse ciliopathies, including Leber congenital amaurosis (LCA) and Joubert-syndrome and related disorders (JSRD). We examined cilia biogenesis and function in cells derived from CEP290-LCA and CEP290-JSRD patients. CEP290 protein was reduced in LCA fibroblasts with no detectable impact on cilia; however, optic cups derived from induced pluripotent stem cells (iPSCs) of CEP290-LCA patients displayed less developed photoreceptor cilia. Lack of CEP290 in JSRD fibroblasts resulted in abnormal cilia and decreased ciliogenesis. We observed selectively reduced localization of ADCY3 and ARL13B. Notably, Hedgehog signaling was augmented in CEP290-JSRD because of enhanced ciliary transport of Smoothened and GPR161. These results demonstrate a direct correlation between the extent of ciliogenesis defects in fibroblasts and photoreceptors with phenotypic severity in JSRD and LCA, respectively, and strengthen the role of CEP290 as a selective ciliary gatekeeper for transport of signaling molecules in and out of the cilium.


Asunto(s)
Antígenos de Neoplasias/genética , Fibroblastos/metabolismo , Proteínas de Neoplasias/genética , Factores de Ribosilacion-ADP/genética , Factores de Ribosilacion-ADP/metabolismo , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Alelos , Animales , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular , Cilios , Proteínas del Citoesqueleto , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Homocigoto , Humanos , Ratones , Ratones Noqueados , Mutación/genética , Proteínas de Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
17.
Nat Cell Biol ; 17(3): 228-240, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25686250

RESUMEN

Membrane association with mother centriole (M-centriole) distal appendages is critical for ciliogenesis initiation. How the Rab GTPase Rab11-Rab8 cascade functions in early ciliary membrane assembly is unknown. Here, we show that the membrane shaping proteins EHD1 and EHD3, in association with the Rab11-Rab8 cascade, function in early ciliogenesis. EHD1 and EHD3 localize to preciliary membranes and the ciliary pocket. EHD-dependent membrane tubulation is essential for ciliary vesicle formation from smaller distal appendage vesicles (DAVs). Importantly, this step functions in M-centriole to basal body transformation and recruitment of transition zone proteins and IFT20. SNAP29, a SNARE membrane fusion regulator and EHD1-binding protein, is also required for DAV-mediated ciliary vesicle assembly. Interestingly, only after ciliary vesicle assembly is Rab8 activated for ciliary growth. Our studies uncover molecular mechanisms informing a previously uncharacterized ciliogenesis step, whereby EHD1 and EHD3 reorganize the M-centriole and associated DAVs before coordinated ciliary membrane and axoneme growth.


Asunto(s)
Proteínas Portadoras/genética , Cilios/metabolismo , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/genética , Animales , Axonema/metabolismo , Axonema/ultraestructura , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Línea Celular , Centriolos/metabolismo , Centriolos/ultraestructura , Cilios/ultraestructura , Embrión no Mamífero , Células Epiteliales/ultraestructura , Humanos , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/ultraestructura , Ratones , Morfogénesis/genética , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/ultraestructura , Transducción de Señal , Vesículas Transportadoras/ultraestructura , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Proteínas de Transporte Vesicular/metabolismo , Pez Cebra , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
18.
Cell Res ; 22(11): 1562-75, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22847741

RESUMEN

The mechanism for nuclear envelope (NE) assembly is not fully understood. Importin-ß and the small GTPase Ran have been implicated in the spatial regulation of NE assembly process. Here we report that chromatin-bound NLS (nuclear localization sequence) proteins provide docking sites for the NE precursor membrane vesicles and nucleoporins via importin-α and -ß during NE assembly in Xenopus egg extracts. We show that along with the fast recruitment of the abundant NLS proteins such as nucleoplasmin and histones to the demembranated sperm chromatin in the extracts, importin-α binds the chromatin NLS proteins rapidly. Meanwhile, importin-ß binds cytoplasmic NE precursor membrane vesicles and nucleoporins. Through interacting with importin-α on the chromatin NLS proteins, importin-ß targets the membrane vesicles and nucleoporins to the chromatin surface. Once encountering Ran-GTP on the chromatin generated by RCC1, importin-ß preferentially binds Ran-GTP and releases the membrane vesicles and nucleoporins for NE assembly. NE assembly is disrupted by blocking the interaction between importin-α and NLS proteins with excess soluble NLS proteins or by depletion of importin-ß from the extract. Our findings reveal a novel molecular mechanism for NE assembly in Xenopus egg extracts.


Asunto(s)
Cromatina/metabolismo , Membrana Nuclear/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/metabolismo , Proteína de Unión al GTP ran/metabolismo
19.
Cardiovasc Res ; 95(4): 430-8, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22707157

RESUMEN

AIMS: The contraction of a heart cell is controlled by Ca(2+)-induced Ca(2+) release between L-type Ca(2+) channels (LCCs) in the cell membrane/T-tubules (TTs) and ryanodine receptors (RyRs) in the junctional sarcoplasmic reticulum (SR). During heart failure, LCC-RyR signalling becomes defective. The purpose of the present study was to reveal the ultrastructural mechanism underlying the defective LCC-RyR signalling and contractility. METHODS AND RESULTS: In rat models of heart failure produced by transverse aortic constriction surgery, stereological analysis of transmission electron microscopic images showed that the volume density and the surface area of junctional SRs and those of SR-coupled TTs were both decreased in failing heart cells. The TT-SR junctions were displaced or missing from the Z-line areas. Moreover, the spatial span of individual TT-SR junctions was markedly reduced in failing heart cells. Numerical simulation and junctophilin-2 knockdown experiments demonstrated that the decrease in junction size (and thereby the constitutive LCC and RyR numbers) led to a scattered delay of Ca(2+) release activation. CONCLUSIONS: The shrinking and eventual absence of TT-SR junctions are important mechanisms underlying the desynchronized and inhomogeneous Ca(2+) release and the decreased contractile strength in heart failure. Maintaining the nanoscopic integrity of TT-SR junctions thus represents a therapeutic strategy against heart failure and related cardiomyopathies.


Asunto(s)
Señalización del Calcio , Membrana Celular/ultraestructura , Insuficiencia Cardíaca/patología , Contracción Miocárdica , Miocitos Cardíacos/ultraestructura , Retículo Sarcoplasmático/ultraestructura , Potenciales de Acción , Animales , Canales de Calcio Tipo L/metabolismo , Membrana Celular/metabolismo , Forma de la Célula , Células Cultivadas , Simulación por Computador , Modelos Animales de Enfermedad , Acoplamiento Excitación-Contracción , Técnicas de Silenciamiento del Gen , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Modelos Cardiovasculares , Miocitos Cardíacos/metabolismo , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Factores de Tiempo , Transfección
20.
Mol Plant ; 4(2): 264-78, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21307369

RESUMEN

Formins have been paid much attention for their potent nucleating activity. However, the connection between the in vivo functions of AtFHs (Arabidopsis thaliana formin homologs) and their effects on actin organization is poorly understood. In this study, we characterized the bundling activity of AtFH8 in vitro and in vivo. Biochemical analysis showed that AtFH8(FH1FH2) could form dimers and bundle preformed actin filaments or induce stellar structures during actin polymerization. Expression of truncated forms of AtFH8 and immunolocalization analysis showed that AtFH8 localized primarily to nuclear envelope in interphase and to the new cell wall after cytokinesis, depending primarily on its N-terminal transmembrane domain. GUS histochemical staining showed AtFH8 was predominantly expressed in Arabidopsis root meristem, vasculature, and outgrowth points of lateral roots. The primary root growth and lateral root initiation of atfh8 could be decreased by latrunculin B (LatB). Analysis of the number of dividing cells in Arabidopsis root tips showed that much fewer dividing cells in Lat B-treated atfh8 plants than wild-type plants, which indicates that AtFH8 was involved in cell division. Actin cytoskeleton in root meristem of atfh8-1 was more sensitive to LatB treatment than that of wild-type. Altogether, our results indicate that AtFH8 is an actin filament nucleator and bundler that functions in cell division and root development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proteínas de Microfilamentos/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Tiazolidinas/farmacología , Actinas/efectos de los fármacos , Actinas/metabolismo , Arabidopsis/citología , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Electroforesis en Gel de Poliacrilamida , Forminas , Meristema/efectos de los fármacos , Meristema/metabolismo , Proteínas de Microfilamentos/genética , Microscopía Electrónica , Microscopía Fluorescente , Raíces de Plantas/citología , Raíces de Plantas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA