Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 14(47): 10685-10692, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37988630

RESUMEN

Perovskite solar cells have witnessed a surge in interest as a promising technology for low-cost, high-efficiency photovoltaics with certified power conversion efficiencies beyond 25%. However, their commercial development is hindered by poor stability and nonradiative losses that restrict their approach to the theoretical efficiency limit. Using ab initio nonadiabatic molecular dynamics, we demonstrate that nonradiative charge recombination is suppressed when the iodide in formamidinium lead iodide (FAPbI3) is partially replaced with pseudohalide anions (SCN-, BF4-, and PF6-). The replacement breaks the symmetry of the system and creates local structural distortion and dynamic disorder, decreasing electron-hole overlap and nonadiabatic electron-vibrational coupling. The charge carrier lifetime is found to increase with increased structural distortion and is the longest for PF6-. This work is fundamentally relevant to the design of high-performance perovskite materials for optoelectronic applications.

2.
Cell Mol Life Sci ; 80(8): 217, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468762

RESUMEN

Spermatogenesis is a complicated process of germ cell differentiation that occurs within the seminiferous tubule in the testis. Peritubular myoid cells (PTMCs) produce major components of the basement membrane that separates and ensures the structural integrity of seminiferous tubules. These cells secrete niche factors to promote spermatogonial stem cell (SSC) maintenance and mediate androgen signals to direct spermatid development. However, the regulatory mechanisms underlying the identity and function of PTMCs have not been fully elucidated. In the present study, we showed that the expression of pancreatic lipase-related protein 2 (Pnliprp2) was restricted in PTMCs in the testis and that its genetic ablation caused age-dependent defects in spermatogenesis. The fertility of Pnliprp2 knockout animals (Pnliprp2-/-) was normal at a young age but declined sharply beginning at 9 months. Pnliprp2 deletion impaired the homeostasis of undifferentiated spermatogonia and severely disrupted the development and function of spermatids. Integrated analyses of single-cell RNA-seq and metabolomics data revealed that glyceride metabolism was changed in PTMCs from Pnliprp2-/- mice. Further analysis found that 60 metabolites were altered in the sperm of the Pnliprp2-/- animals; notably, lipid metabolism was significantly dysregulated. Collectively, these results revealed that Pnliprp2 was exclusively expressed in PTMCs in the testis and played a novel role in supporting continual spermatogenesis in mice. The outcomes of these findings highlight the function of lipid metabolism in reproduction and provide new insights into the regulation of PTMCs in mammals.


Asunto(s)
Semen , Testículo , Animales , Masculino , Ratones , Lipasa/genética , Mamíferos , Espermatogénesis/genética , Espermatogonias , Testículo/metabolismo
3.
ACS Appl Mater Interfaces ; 14(51): 57197-57205, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516838

RESUMEN

Phonon-mediated charge relaxation plays a vital role in controlling thermal transport across an interface for efficient functioning of two-dimensional (2D) nanostructured devices. Using a combination of nonadiabatic molecular dynamics with real-time time-dependent density functional theory, we demonstrate a strong influence of adhesion layers at the Au/WSe2 interface on nonequilibrium charge relaxation, rationalizing recent ultrafast time-resolved experiments. Ti oxide layers (TiOx) create a barrier to the interaction between Au and WSe2 and extend hot carrier lifetimes, creating benefits for photovoltaic and photocatalytic applications. In contrast, a metallic Ti layer accelerates the energy flow, as needed for efficient heat dissipation in electronic devices. The interaction of metallic Ti with WSe2 causes W-Se bond scissoring and pins the Fermi level. The Ti adhesion layer enhances the electron-phonon coupling due to an increased density of states and the light mass of the Ti atom. The conclusions are robust to presence of typical point defects. The atomic-scale ab initio analysis of carrier relaxation at the interfaces advances our knowledge in fabricating nanodevices with optimized electronic and thermal properties.

4.
Nanoscale ; 14(29): 10514-10523, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35833340

RESUMEN

Thermal transport at nanoscale metal-semiconductor interfaces via electron-phonon coupling is crucial for applications of modern microelectronic, electro-optic and thermoelectric devices. To enhance the device performance, the heat flow can be regulated by modifying the interfacial atomic interactions. We use ab initio time-dependent density functional theory combined with non-adiabatic molecular dynamics to study how the hot electron and hole relaxation rates change on incorporating a thin Ti adhesion layer at the Au/WSe2 interface. The excited charge carrier relaxation is much faster in Au/Ti/WSe2 due to the enhanced electron-phonon coupling, rationalized by the following reasons: (1) Ti atoms are lighter than Au, W and Se atoms and move faster. (2) Ti has a significant contribution to the electronic properties in the relevant energy range. (3) Ti interacts strongly with WSe2 and promotes its bond-scissoring which causes Fermi-level pinning, making WSe2 contribute to electronic properties around the Fermi level. The changes in the relaxation rates are more pronounced for excited electrons compared to holes because both relative and absolute Ti contributions to the electronic properties are larger above than below the Fermi level. The results provide guidance for improving the design of novel and robust materials by optimizing the heat dissipation at metal-semiconductor interfaces.

5.
J Phys Chem Lett ; 11(4): 1419-1427, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32011143

RESUMEN

Plasmonic excitations in noble metals have many fascinating properties and give rise to a broad range of applications. We demonstrate, using nonadiabatic molecular dynamics combined with time-domain density functional theory, that the chemical composition and stoichiometry of substrates can have a strong influence on charge dynamics. By changing oxygen content in TiO2, including stoichiometric, oxygen rich, and oxygen poor phases, and Ti metal, one can alter lifetimes of charge carriers in Au by a factor of 5 and control the ratio of electron-to-hole relaxation rates by a factor of 10. Remarkably, a thin TiOx substrate greatly alters charge carrier properties in much thicker Au films. Such large variations stem from the fact that the Ti and O atoms are much lighter than Au, and their vibrations are much faster at dissipating the energy. The control over a particular charge carrier and an energy range depends on the Au and TiOx level alignment, and the interfacial interaction strength. These factors are easily influenced by the TiOx stoichiometry. In particular, oxygen rich and poor TiO2 can be used to control holes and electrons, respectively, while metallic Ti affects both charge carriers. The detailed atomistic analysis of the interfacial and electron-vibrational interactions generates the fundamental understanding of the properties of plasmonic materials needed to design photovoltaic, photocatalytic, optoelectronic, sensing, nanomedical, and other devices.

6.
Chin Med J (Engl) ; 131(6): 648-656, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29521286

RESUMEN

BACKGROUND:: Previous studies have found that schoolchildren with attention-deficit/hyperactivity disorder (ADHD) showed difficulties in neuropsychological function. This study aimed to assess neuropsychological function in Chinese preschoolers with ADHD using broad neuropsychological measures and rating scales and to test whether the pattern and severity of neuropsychological weakness differed among ADHD presentations in preschool children. METHODS:: The 226 preschoolers (163 with ADHD and 63 controls) with the age of 4-5 years were included and assessed using the Behavior Rating Scale of Executive Function-Preschool Version (BRIEF-P) and a series of tests to investigate neuropsychological function. RESULTS: Preschoolers with ADHD showed higher scores in all domains of the BRIEF-P (inhibition: 30.64 ± 5.78 vs.20.69 ± 3.86, P < 0.001; shift: 13.40 ± 3.03 vs.12.41 ± 2.79, P = 0.039; emotional control:15.10 ± 3.53 vs.12.20 ± 2.46, P < 0.001; working memory: 28.41 ± 4.99 vs.20.95 ± 4.60, P < 0.001; plan/organize: 17.04 ± 3.30 vs.13.29 ± 2.40, P < 0.001) and lower scores of Statue (23.18 ± 7.84 vs.28.27 ± 3.18, P = 0.001), Word Generation (15.22 ± 6.52 vs.19.53 ± 7.69, P = 0.025), Comprehension of Instructions (14.00 ± 4.44 vs.17.02 ± 3.39, P = 0.016), Visuomotor Precision (P < 0.050), Toy delay (P = 0.048), and Matrices tasks (P = 0.011), compared with normal control. In terms of the differences among ADHD subtypes, all ADHD presentations had higher scores in several domains of the BRIEF-P (P < 0.001), and the ADHD-combined symptoms (ADHD-C) group had the poorest ratings on inhibition and the ability to Plan/Organize. For neuropsychological measures, the results suggested that the ADHD-C group had poorer performances than the ADHD-predominantly inattentive symptoms (ADHD-I) group on Statue tasks (F = 7.34, η2 = 0.12, P < 0.001). Furthermore, the ADHD-hyperactive/impulsive symptoms group had significantly poorer performances compared to the ADHD-C group in the Block Construction task (F = 4.89, η2 = 0.067, P = 0.003). However, no significant group differences were found between the ADHD-I group and normal control. CONCLUSION:: Based on the combined evaluation of performance-based neuropsychological tests and the BRIEF-P, preschoolers with ADHD show difficulties of neuropsychological function in many aspects.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Pueblo Asiatico , Escala de Evaluación de la Conducta , Preescolar , Función Ejecutiva/fisiología , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas
7.
Phys Chem Chem Phys ; 18(42): 29591-29599, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27752661

RESUMEN

In this work, we designed three dyes (Ru1, Ru2, and Ru3) by modifying the square-planar quadridentate ligand of the experimental Ru(ii) complex K1, [RuL(trans-NCS)2] with L = dimethyl-6,60-bis(methyl-2-pyridylamino)-2,20-bipyridine-4,40-dicarboxylate, from a theoretical viewpoint. As is known, K1 shows obvious advantages over the famous dye N749 in light absorption ability because of its highly conjugated ancillary ligands. Density functional theory and time-dependent density functional theory methods were used to determine the geometrical structures, electronic structures and absorption spectra of the dye complexes. A quantum dynamics method in conjunction with extended Hückel theory was used to simulate the interfacial electron transfer process at the dye-TiO2 interface. The calculated results suggest that Ru1, which contains arylmethane groups, presents improved light absorption and efficient interfacial electron transfer compared with the reference dye K1. We also verified that the position of the anchoring carboxylic acid groups could largely guide the rate of interfacial electron transfer. Ru3, whose anchoring groups are attached to pyridine rings, would have significantly faster interfacial electron transfer than Ru2, whose anchoring groups are attached to the pyrrole ligands; this is because varying the position of the anchoring group results in a difference in the extent of electron donor-acceptor orbital interactions. We expect that the current study will provide some theoretical guidelines for the experimental synthesis of novel Ru(ii) complex dyes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...