Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 337: 122578, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37726032

RESUMEN

Heavy metal(loid)-contaminated available arable land seriously affects crop development and growth. Engineered nanomaterials have great potential in mitigating toxic metal(loid) stress in plants. However, there are few details of nanoparticles (NPs) involved in Panax notoginseng response to cadmium (Cd) and arsenic (As). Herein, integrating physiological and metabolomic analyses, we investigated the effects of Fe3O4 NPs on plant growth and Cd/As responses in P. notoginseng. Cd/As treatment caused severe growth inhibition. However, foliar application of Fe3O4 NPs increased beneficial elements in the roots and/or leaves, decreased Cd/As content by 10.38% and 20.41% in the roots, reduced membrane damage and regulated antioxidant enzyme activity, thereby alleviating Cd/As-induced growth inhibition, as indicated by increased shoot fresh weight (FW), the rootlet length and root FW by 40.14%, 15.74%, and 46.70% under Cd stress and promoted the shoot FW by 27.00% under As toxicity. Metabolomic analysis showed that 227 and 295 differentially accumulated metabolites (DAMs) were identified, and their accumulation patterns were classified into 8 and 6 clusters in the roots and leaves, respectively. Fe3O4 NPs altered metabolites significantly involved in key pathways, including amino sugar and nucleotide sugar metabolism, flavonoid biosynthesis and phenylalanine metabolism, thus mediating the trade-off between plant growth and defense under stress. Interestingly, Fe3O4 NPs recovered more Cd/As-induced DAMs to normal levels, further supporting that Fe3O4 NPs positively affected seedling growth under metal(loid)s stress. In addition, Fe3O4 NPs altered terpenoids when the seedlings were subjected to Cd/As stress, thus affecting their potential medicinal value. This study provides insights into using nanoparticles to improve potential active ingredients of medicinal plants in metal(loid)-contaminated areas.


Asunto(s)
Arsénico , Nanopartículas , Panax notoginseng , Contaminantes del Suelo , Cadmio/metabolismo , Arsénico/metabolismo , Panax notoginseng/metabolismo , Plantas/metabolismo , Plantones , Antioxidantes/metabolismo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/metabolismo
2.
Plant Divers ; 44(3): 308-315, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35769596

RESUMEN

Nervonic acid (NA) is a very-long-chain monounsaturated fatty acid with pharmaceutical and nutraceutical functions that plays an important role in treating several neurological disorders. One major source of NA is plant seed oil. Here we report fatty acid profiles of seeds and germplasm diversity of six plant species, including three woody plants with high amounts of NA-enriched seed oil, Malania oleifera, Macaranga adenantha, and M. indica. M. oleifera had the largest seed (average 7.40 g single seed), highest oil content (58.71%), and highest NA level (42.22%). The germplasm diversity of M. oleifera is associated with its habitat but not elevation. Seeds of M. adenantha contained higher NA levels (28.41%) than M. indica (21.77%), but M. indica contained a significantly higher oil content (29.22%) and seed yield. M. adenantha germplasm varied among populations, with one population having seeds with high oil content (22.63%) and NA level (37.78%).Although M. indica grow naturally at a range of elevations, no significant differences were detected between M. indica populations. These results suggest that M. indica and M. oleifera have greater potential as a source of NA, which will contribute to constructing a germplasm resource nursery and establishing a selection and breeding program to improve the development of NA-enriched plants.

3.
J Nanobiotechnology ; 20(1): 302, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761340

RESUMEN

BACKGROUND: Heavy metals repress tobacco growth and quality, and engineered nanomaterials have been used for sustainable agriculture. However, the underlying mechanism of nanoparticle-mediated cadmium (Cd) toxicity in tobacco remains elusive. RESULTS: Herein, we investigated the effects of Fe3O4 and ZnO nanoparticles (NPs) on Cd stress in tobacco cultivar 'Yunyan 87' (Nicotiana tabacum). Cd severely repressed tobacco growth, whereas foliar spraying with Fe3O4 and ZnO NPs promoted plant growth, as indicated by enhancing plant height, root length, shoot and root fresh weight under Cd toxicity. Moreover, Fe3O4 and ZnO NPs increased, including Zn, K and Mn contents, in the roots and/or leaves and facilitated seedling growth under Cd stress. Metabolomics analysis showed that 150 and 76 metabolites were differentially accumulated in roots and leaves under Cd stress, respectively. These metabolites were significantly enriched in the biosynthesis of amino acids, nicotinate and nicotinamide metabolism, arginine and proline metabolism, and flavone and flavonol biosynthesis. Interestingly, Fe3O4 and ZnO NPs restored 50% and 47% in the roots, while they restored 70% and 63% in the leaves to normal levels, thereby facilitating plant growth. Correlation analysis further indicated that these metabolites, including proline, 6-hydroxynicotinic acid, farrerol and quercetin-3-O-sophoroside, were significantly correlated with plant growth. CONCLUSIONS: These results collectively indicate that metal nanoparticles can serve as plant growth regulators and provide insights into using them for improving crops in heavy metal-contaminated areas.


Asunto(s)
Nanopartículas del Metal , Metales Pesados , Nanopartículas , Contaminantes del Suelo , Óxido de Zinc , Cadmio/análisis , Metabolómica , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Metales Pesados/análisis , Metales Pesados/toxicidad , Nanopartículas/química , Nanopartículas/toxicidad , Hojas de la Planta/química , Raíces de Plantas/metabolismo , Prolina/análisis , Prolina/metabolismo , Prolina/farmacología , Contaminantes del Suelo/química , Nicotiana/metabolismo , Óxido de Zinc/química , Óxido de Zinc/toxicidad
4.
Biotechnol Biofuels ; 12: 16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30679955

RESUMEN

BACKGROUND: Ricinoleic acid is a high-value hydroxy fatty acid with broad industrial applications. Hiptage benghalensis seed oil contains a high amount of ricinoleic acid (~ 80%) and represents an emerging source of this unusual fatty acid. However, the mechanism of ricinoleic acid accumulation in H. benghalensis is yet to be explored at the molecular level, which hampers the exploration of its potential in ricinoleic acid production. RESULTS: To explore the molecular mechanism of ricinoleic acid biosynthesis and regulation, H. benghalensis seeds were harvested at five developing stages (13, 16, 19, 22, and 25 days after pollination) for lipid analysis. The results revealed that the rapid accumulation of ricinoleic acid occurred at the early-mid-seed development stages (16-22 days after pollination). Subsequently, the gene transcription profiles of the developing seeds were characterized via a comprehensive transcriptome analysis with second-generation sequencing and single-molecule real-time sequencing. Differential expression patterns were identified in 12,555 transcripts, including 71 enzymes in lipid metabolic pathways, 246 putative transcription factors (TFs) and 124 long noncoding RNAs (lncRNAs). Twelve genes involved in diverse lipid metabolism pathways, including fatty acid biosynthesis and modification (hydroxylation), lipid traffic, triacylglycerol assembly, acyl editing and oil-body formation, displayed high expression levels and consistent expression patterns with ricinoleic acid accumulation in the developing seeds, suggesting their primary roles in ricinoleic acid production. Subsequent co-expression network analysis identified 57 TFs and 35 lncRNAs, which are putatively involved in the regulation of ricinoleic acid biosynthesis. The transcriptome data were further validated by analyzing the expression profiles of key enzyme-encoding genes, TFs and lncRNAs with quantitative real-time PCR. Finally, a network of genes associated with ricinoleic acid accumulation in H. benghalensis was established. CONCLUSIONS: This study was the first step toward the understating of the molecular mechanisms of ricinoleic acid biosynthesis and oil accumulation in H. benghalensis seeds and identified a pool of novel genes regulating ricinoleic acid accumulation. The results set a foundation for developing H. benghalensis into a novel ricinoleic acid feedstock at the transcriptomic level and provided valuable candidate genes for improving ricinoleic acid production in other plants.

5.
Inorg Chem ; 53(20): 11060-7, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25286133

RESUMEN

To develop a better understanding of the mechanism responsible for topochemical microcrystal conversion (TMC) from Aurivillius SrBi4Ti4O15 precursors to perovskite SrTiO3 microplatelets, compositional/structural evolutions, morphological development, and reaction interface evolution of the (001) oriented SrBi4Ti4O15 microplatelets were investigated during the conversion process. The results show that multiple topotactic nucleation events of SrTiO3 occurred directly on the surfaces of SrBi4Ti4O15 above 700 °C, while reacting zones of intermediate phase(s) with less Bi(3+) contents were observed to form in the interior of SrBi4Ti4O15. Extensive exfoliation of the precursors occurred generally parallel to the (001) surfaces above 775 °C. At 950 °C, the original single-crystal SrBi4Ti4O15 platelet was replaced by a polycrystalline aggregate consisting of (001) aligned SrTiO3 crystallites and poorly crystallized intermediate phase(s). With further increasing the temperature or holding time, the SrTiO3 phase formed from related intermediate phase(s), and the aligned crystallites were sintered to form dense SrTiO3 with strong (001) orientation. The obtained SrTiO3 microplatelets preserved the shape of SrBi4Ti4O15 and show high chemical and phase purity. This TMC mechanism has general applicability to a variety of compounds and will be very useful for the design and synthesis of novel anisotropic perovskite crystals with high quality in the future.

6.
J Appl Phys ; 106(5): 54110, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19859578

RESUMEN

Surface acoustic wave (SAW) propogation in Y-cut and Z-cut relaxor-based 0.67Pb(Mg(13)Nb(23))O(3)-0.33PbTiO(3) (PMN-33%PT) ferroelectric single crystals poled along [001](c) cubic direction has been analyzed theoretically. Characteristic curves were obtained for the phase velocity, electromechanical coupling coefficient and PFA of SAW in Y-cut and Z-cut PMN-33%PT single crystals. It was found that the phase velocity is lower, while the electromechanical coupling coefficient is much higher, than that of traditional piezoelectric materials. The power flow angle (PFA) can be zero in certain directions, which makes this crystal system a promising material for future SAW devices with smaller size and enhanced performance. The directions near 45 degrees and 135 degrees of Y-cut PMN-33%PT crystals are found to be optimum directions for SAW device applications.

7.
Opt Express ; 17(5): 3878-83, 2009 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-19259229

RESUMEN

Red upconversion (UC) emission at 626 nm is obtained from a LiNbO(3) crystal codoped with Er(3+) and Eu(3+) under 800 nm femtosecond laser excitation. Energy transfer from ((2)H(11/2,),(4) S(3/2)) levels of Er(3+), which are excited by excited state absorption, to (5)D(1) of Eu(3+) followed by rapidly relaxing to (5)D(0) nonradiatively leads to this red UC emission. The energy transfer efficiency and Er-Eu transfer microparameter of approximately 30% is obtained in LiNbO(3):Er(3+)(1.0 mol%),Eu(3+)(0.1 mol%). These initial experimental results indicate that the red UC emission can be obtained from Er(3+)/Eu(3+) codoped system under diode laser excitation.

8.
Appl Phys Lett ; 95(24): 242906, 2009 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-20069133

RESUMEN

Surface acoustic wave (SAW) propagation properties in relaxor-based 0.67Pb(Mg(13)Nb(23))O(3)-0.33PbTiO(3) (PMN-33%PT) ferroelectric single crystals poled along [111](c) has been analyzed theoretically. We found that the X-cut PMN-33%PT has lower phase velocity and higher electromechanical coupling coefficient compared to traditional piezoelectric materials. The power flow angle (PFA) can be zero in specific directions, which could drastically improve the performance of SAW devices. Our theoretical results indicate that the direction about 5 degrees canted from [111](c) is the optimum direction for the X-cut [111](c) poled crystals in SAW device applications. Characteristic curves were also obtained for the phase velocity, electromechanical coupling coefficient, and PFA in Z-cut single-domain PMN-33%PT single crystals.

9.
Opt Lett ; 33(9): 1014-6, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18451971

RESUMEN

Blue (487.6 nm), green (544.1 nm), yellow (582.1 nm), and red (623.6 nm) upconversion (UC) luminescences are achieved in a Tb(3+)-doped lithium niobate crystal when an 800 nm femtosecond laser is loosely focused onto the sample at room temperature. The relationship between UC luminescence intensity and the pump energy indicates that a two-photon excitation process is dominant in this UC luminescence phenomenon. The Tb(3+) sensitive temperature dependence of the luminescence intensity is demonstrated via an obvious reduction of luminescence intensity with durative laser irradiation.

10.
Opt Lett ; 33(7): 693-5, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18382520

RESUMEN

Er(3+) green upconversion (UC) emission corresponding to the transition of (4)S(3/2) ((2)H(11/2))-->(4)I(15/2) is enhanced in a Er/Dy-codoped LiNbO(3) crystal compared with Er-doped LiNbO(3) under 800 nm femtosecond-laser excitation at room temperature. The upconversion mechanisms are proposed based on spectral, kinetic, and pump-power dependence analyses. The energy-transfer efficiency from Dy(3+)((4)F(9/2)) to Er(3+)((4)F(7/2)) is 33%, which results in the enhancement of green UC emission. This energy transfer is advantageous for the Er(3+) UC emission sensitized by Dy(3+), especially in a low-phonon-energy host matrix.


Asunto(s)
Óptica y Fotónica , Conductividad Eléctrica , Diseño de Equipo , Iones , Rayos Láser , Láseres de Semiconductores , Metales de Tierras Raras , Modelos Estadísticos , Temperatura , Factores de Tiempo
11.
Physica A ; 387(8): 1963-1971, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19655025

RESUMEN

By taking into account surface transition layers (STL), the dielectric properties of ferroelectric thin films described by the transverse Ising model are discussed in the framework of the mean field approximation. Functions of the intra-layer and inter-layer couplings are introduced to characterize STL, which makes the model more realistic compared to previous treatment of surface layers using uniform surface exchange interactions and a transverse field. The effects of physical parameters on the dielectric properties are quantified. The results obtained indicate that STL has very strong influence on the dielectric properties of ferroelectric thin films. Some of our theoretical results are in accord with the available experimental data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...