Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.525
Filtrar
1.
Quant Imaging Med Surg ; 14(5): 3619-3627, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38720849

RESUMEN

Background: Cardiac ultrasound is one of the most important examinations in cardiovascular medicine, but the technical requirements for the operator are relatively high, which to some extent affects the scope of its use. This study was dedicated to investigating the agreement of ejection fraction between coronary computed tomography (CT) and cardiac ultrasound and diagnostic performance in evaluating the clinical diagnosis of patients with chronic heart failure. Methods: We conducted a single-center-based retrospective study including 343 consecutive patients enrolled between January 2019 to April 2020, all of whom presented with suspected symptoms of heart failure within one month. All enrolled cases performed cardiac ultrasound and coronary CT scans. The CT images were analyzed using accurate left ventricle (AccuLV) artificial intelligence (AI) software to calculate the ejection fraction-computed tomography (EF-CT) and it was compared with the ejection fraction (EF) obtained based on ultrasound. Cardiac insufficiency was determined if the EF measured by ultrasound was below 50%. Diagnostic performance analysis, correlation analysis and Bland-Altman plot were used to compare agreement between EF-CT and CT. Results: Of the 319 successfully performed patients, 220 (69%) were identified as cardiac insufficiency. Quantitative consistency analysis showed a good correlation between EF-CT and EF values in all cases (R square =0.704, r=0.837). Bland-Altman analysis showed mean bias of 6.6%, mean percentage error of 27.5% and 95% limit of agreement of -17% to 30% between EF and EF-CT. The results of the qualitative diagnostic study showed that the sensitivity and specificity of EF measured by coronary CT reached a high level of 91% [95% confidence interval (CI): 86-94%], and the positive diagnostic value was up to 96% (95% CI: 92-98%). Conclusions: The EF-CT and EF have excellent agreement, and AccuLV-based AI left ventricular function analysis software perhaps can be used as a clinical diagnostic reference.

2.
J Ethnopharmacol ; 331: 118317, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723918

RESUMEN

BACKGROUND: Evidence has demonstrated that Chinese medicine formula Xuefu Zhuyu decoction can markedly promote the formation of new hair in patients and mice with alopecia areata (AA). Amygdalin is one of the active components of Xuefu Zhuyu decoction, but its therapeutic effects and the underlying mechanisms on AA remains largely unrevealed. PURPOSE: Therefore, this study aims to investigate the therapeutic effects and to probe its molecular mechanisms of inflammation and immune regulation on AA model of C3H/HeJ mice. STUDY DESIGN: The C3H/HeJ female mice were divided into control, AA, rusolitinib (60 mg/kg), and amygdalin groups (60, 90, and 120 mg/kg, 0.2 ml/10 g, i.g.). METHODS: The optical microscope was used to observe the feature of the local skin, and the number of lanugo and terminal hair. H&E staining was performed to determine the degree of pathological damage to the skin. ELISA was performed to detect levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in mice serum. Flow cytometry was carried out to analyze the CD4+CD25+FOXP3+, CD4+ and CD8+ of skin tissue. And the levels of CD4+ and CD8+, p-JAK/JAK2, p-STAT3/STAT, and SOCS3 were detected by immunohistochemistry. Western blot and qRT-PCR were employed to examine the expression levels of IL-6, TNF-α, IFN-γ, JAK2, p-JAK, STAT, p-STAT3 and SOCS3 proteins and genes in skin tissues. RESULTS: Compared with AA group, amygdalin immensely increased the number of vellus hairs and decreased the number of terminal hairs determined by skin microscopy and H&E staining. ELISA, Western blot and qRT-PCR data showed that the levels of IL-6, TNF-α and IFN-γ in serum and skin tissues of AA mice were significantly increased, while amygdalin administration dramatically restrained the contents of the three pro-inflammatory factors. Flow cytometry and immunohistochemistry hinted that amygdalin observably enhanced the number of CD4+CD25+FOXP3+ and CD4+ cells, while inhibited the number of CD8+ positive cells in mice with AA. Moreover, amygdalin signally reduced JAK2/STAT3 pathway-related protein and gene levels in AA mice. CONCLUSION: Amygdalin could inhibit inflammatory response and improve immune function in the treatment of AA. The underlying molecular mechanism may be related to inhibition of JAK2/STAT3 pathway.

3.
Langmuir ; 40(19): 9999-10007, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696767

RESUMEN

With a large theoretical capacity and high energy density, aluminum-air batteries are a promising energy storage device. However, the rigid structure and liquid electrolyte of a traditional aluminum-air battery limit its application potential in the field of flexible electronics, and the irreversible corrosion of its anode greatly reduces the battery life. To solve the above problems, a PVA/KC/KOH (2 M) composite gel polymer electrolyte (GPE) with a three-dimensional dual-network structure consisting of polyvinyl alcohol (PVA), kappa-carrageenan (KC), and potassium hydroxide was prepared in this paper by a simple two-step method and applied in aluminum-air batteries. At room temperature, the ionic conductivity of the PVA/KC/KOH (2 M) composite GPE was found to be up to 6.50 × 10-3 S cm-1. By utilizing this composite GPE, a single flexible aluminum-air battery was assembled and achieved a maximum discharge voltage of 1.2 V at 5 mA cm-2, with discharge time exceeding 3 h. Moreover, the single flexible aluminum-air battery maintains good electrochemical performance under various deformation modes, and the output voltage of the battery remains at about 99% after 300 cycles. The construction of flexible aluminum-air batteries based on a three-dimensional dual-network PVA/KC/KOH composite GPE provides excellent safety and high-multiplication capabilities for aluminum-air batteries, making them potential candidates for various flexible device applications.

4.
Zool Res ; 45(3): 633-647, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38766746

RESUMEN

Painful stimuli elicit first-line reflexive defensive reactions and, in many cases, also evoke second-line recuperative behaviors, the latter of which reflects the sensing of tissue damage and the alleviation of suffering. The lateral parabrachial nucleus (lPBN), composed of external- (elPBN), dorsal- (dlPBN), and central/superior-subnuclei (jointly referred to as slPBN), receives sensory inputs from spinal projection neurons and plays important roles in processing affective information from external threats and body integrity disruption. However, the organizational rules of lPBN neurons that provoke diverse behaviors in response to different painful stimuli from cutaneous and deep tissues remain unclear. In this study, we used region-specific neuronal depletion or silencing approaches combined with a battery of behavioral assays to show that slPBN neurons expressing substance P receptor ( NK1R) (lPBN NK1R) are crucial for driving pain-associated self-care behaviors evoked by sustained noxious thermal and mechanical stimuli applied to skin or bone/muscle, while elPBN neurons are dispensable for driving such reactions. Notably, lPBN NK1R neurons are specifically required for forming sustained somatic pain-induced negative teaching signals and aversive memory but are not necessary for fear-learning or escape behaviors elicited by external threats. Lastly, both lPBN NK1R and elPBN neurons contribute to chemical irritant-induced nocifensive reactions. Our results reveal the functional organization of parabrachial substrates that drive distinct behavioral outcomes in response to sustained pain versus external danger under physiological conditions.


Asunto(s)
Nocicepción , Núcleos Parabraquiales , Animales , Núcleos Parabraquiales/fisiología , Ratones , Nocicepción/fisiología , Neuronas/fisiología , Dolor/fisiopatología , Masculino , Conducta Animal/fisiología
5.
Diabetes Metab Res Rev ; 40(4): e3813, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767128

RESUMEN

AIMS: The dawn phenomenon (DP) is an abnormal early morning blood glucose rise without nocturnal hypoglycaemia, which can be more easily and precisely assessed with continuous glucose monitoring (CGM). This prospective study aimed to explore the association between DP and the risk of all-cause mortality in patients with type 2 diabetes. MATERIALS AND METHODS: A total of 5542 adult inpatients with type 2 diabetes in a single centre were analysed. The magnitude of DP (ΔG) was defined as the increment in the CGM-determined glucose value from nocturnal nadir (after 24:00) to prebreakfast. Participants were stratified into four groups by ΔG: ≤1.11, 1.12-3.33, 3.34-5.55, and >5.55 mmol/L. Cox proportional hazard regression models were used to evaluate the impact of DP on all-cause mortality risk. RESULTS: During a median follow-up of 9.4 years, 1083 deaths were identified. The restricted cubic spline revealed a nonlinear (p for nonlinearity = 0.002) relationship between ΔG and the risk of all-cause mortality. A multivariate-adjusted Cox regression model including glycated haemoglobin A1c (HbA1c) showed that ΔG > 5.55 mmol/L was associated with 30% (95% CI, 1.01-1.66) higher risk of all-cause mortality, as compared with ΔG 1.12-3.33 mmol/L. CONCLUSIONS: Higher ΔG is significantly related to an increased risk of all-cause mortality in type 2 diabetes, suggesting that severe DP should be given more attention as a part of glucose management to reduce the risk of long-term adverse outcomes.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/mortalidad , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/sangre , Femenino , Masculino , Persona de Mediana Edad , Glucemia/análisis , Estudios de Seguimiento , Estudios Prospectivos , Factores de Riesgo , Pronóstico , Anciano , Hemoglobina Glucada/análisis , Automonitorización de la Glucosa Sanguínea , Causas de Muerte , Biomarcadores/análisis , Biomarcadores/sangre , Ritmo Circadiano/fisiología , Hipoglucemia/mortalidad , Tasa de Supervivencia , Adulto
6.
Case Rep Oncol Med ; 2024: 7925511, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770355

RESUMEN

Background: Delayed migration and exposure of embolic coils is a rare complication of endovascular therapy for carotid blowout syndrome. Methods: A 64-year-old man with recurrent tongue cancer noticed the presence of foreign body in the malignant wound on the right side of his neck. He had undergone transarterial embolization on his right vertebral artery, right common carotid artery (CCA), and internal carotid artery (ICA) for carotid blowout syndrome 1 month prior. On physical examination, exposed spring-like metallic coils were observed, covered in brownish granulation tissue, at the bottom of the malignant wound. Neck radiograph and computed tomography confirmed the extrusion and migration of the embolic coils. Results: In this case, the patient was managed by transection of the exposed coils at the wound surface with close monitoring. Conclusions: Computed tomography angiography is essential for assessing the condition of the remaining embolic coils. In cases with thrombosed parent arteries, a conservative approach, like the transection of exposed coils, can be employed as part of the management strategy.

7.
Arthroscopy ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735417

RESUMEN

PURPOSES: To evaluate if the modified suture button Latarjet procedure with coracoacromial ligament (CAL) and pectoralis minor (PM) preservation could achieve excellent outcomes at the 2-year follow-up. METHODS: During January 2019 to January 2021, data of patients who underwent the modified suture button Latarjet with CAL and PM preservation in our department was collected. The glenoid bone loss of these patients were above 20% or over 10% with high demands for exercise. Partial coracoid osteotomy was based on the results of the preoperative 3-dimensional computed tomography (3D CT) evaluation of the glenoid defect area (GDA) and corresponding coracoid process morphology. The preoperative and postoperative clinical results were assessed. The minimal clinically important difference (MCID) was utilized to compare improvement in clinical outcomes. Graft-glenoid union and remodeling were assessed using postoperative 3D CT, and magnetic resonance imaging (MRI) was performed to confirm the integrity of the CAL and PM postoperatively. RESULTS: 35 patients were included in this study; the mean follow-up time was 26.9 ± 1.9 months. No case of recurrent dislocation or sublaxity. Significant improvements were observed in mean visual analog scale (VAS) scores for pain during motion, American Shoulder and Elbow Surgeons (ASES) score, Rowe score, and Walch-Duplay score (P < .001). The percentage of patients achieving at least an MCID improvement in clinical outcomes was: VAS 85.71%; ASES 97.14%; Rowe 100%; Walch-Duplay 97.14%. 33 patients (94.3% of all cases) were able to return to their preoperative sport levels, 34 grafts (97.1%) achieved bone union (1 soft union) in 6.3±2.2 months, and the coracoid grafts restored 97.1±4.0% of the perfect fitting circle (PFC) at the last follow-up. Postoperative CT scan showed that 31 grafts (88.6%) were placed ideally in vertical view. In the axial view, 25 grafts (82.9%) were flushed to the glenoid, whereas 1 and 5 grafts were fixed medially and laterally, respectively. The CAL and PM were visualized postoperatively. No arthropathy was observed in any patient at the last follow-up. CONCLUSIONS: The modified suture button Latarjet procedure with CAL and PM preservation obtained good clinical and radiological results without recurrence or complications. A substantial majority of patients (>85%) achieved the MCID for the VAS, ASES, ROWE, and Walch-Duplay scores. Additionally, the malpositioned graft (17.1%) did not cause arthropathy of the joints at 2-year follow-up.

8.
Int J Biol Macromol ; 269(Pt 1): 132059, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38710250

RESUMEN

The fermentation of the high-viscosity polysaccharide WL gum has always been associated with poor mass transfer. Appropriate impeller configurations are key factors in maintaining homogeneity and sufficient mass transfer conditions. Therefore, a flat-folded disc turbine impeller (FFDT) taking into account both the reduced cavitation effect and the increased contact area was designed. Besides, a curved cross impeller (CC) and a fishbone-shaped impeller (FS) generating axial flow were also designed. The energy consumption and efficiency of the designed impellers and eight reported impellers were evaluated through fermentation and principal component analysis (PCA). Compared to the commonly-used six-blade flat-blade disc turbine (FBDT), the ungassed power number of FFDT was reduced by 50 %. Combinations of six-blade Brumajin impeller (BM) + FFDT and CC + FFDT produced high WL gum production and viscosity (34.0 g/L, 35.50 g/L, and 62.64 Pa·s, 61.68 Pa·s, respectively) and were suitable impellers for WL biosynthesis. WL gum from BM + FFDT showed higher viscosity, viscoelasticity, and molecular weight than that from FBDT + FBDT. In addition, fewer amino acids and pyruvic acid intermediates were formed using BM + FFDT, indicating a greater metabolic flux towards WL gum synthesis. This work provided an important reference for the design of impellers in high-viscosity fermentation systems.

9.
NPJ Regen Med ; 9(1): 19, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724586

RESUMEN

Cell therapies are emerging as promising treatments for a range of liver diseases but translational bottlenecks still remain including: securing and assessing the safe and effective delivery of cells to the disease site; ensuring successful cell engraftment and function; and preventing immunogenic responses. Here we highlight three therapies, each utilising a different cell type, at different stages in their clinical translation journey: transplantation of multipotent mesenchymal stromal/signalling cells, hepatocytes and macrophages. To overcome bottlenecks impeding clinical progression, we advocate for wider use of mechanistic in silico modelling approaches. We discuss how in silico approaches, alongside complementary experimental approaches, can enhance our understanding of the mechanisms underlying successful cell delivery and engraftment. Furthermore, such combined theoretical-experimental approaches can be exploited to develop novel therapies, address safety and efficacy challenges, bridge the gap between in vitro and in vivo model systems, and compensate for the inherent differences between animal model systems and humans. We also highlight how in silico model development can result in fewer and more targeted in vivo experiments, thereby reducing preclinical costs and experimental animal numbers and potentially accelerating translation to the clinic. The development of biologically-accurate in silico models that capture the mechanisms underpinning the behaviour of these complex systems must be reinforced by quantitative methods to assess cell survival post-transplant, and we argue that non-invasive in vivo imaging strategies should be routinely integrated into transplant studies.

10.
Nat Struct Mol Biol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773335

RESUMEN

Channel enzymes represent a class of ion channels with enzymatic activity directly or indirectly linked to their channel function. We investigated a TRPM2 chanzyme from choanoflagellates that integrates two seemingly incompatible functions into a single peptide: a channel module activated by ADP-ribose with high open probability and an enzyme module (NUDT9-H domain) consuming ADP-ribose at a remarkably slow rate. Using time-resolved cryogenic-electron microscopy, we captured a complete series of structural snapshots of gating and catalytic cycles, revealing the coupling mechanism between channel gating and enzymatic activity. The slow kinetics of the NUDT9-H enzyme module confers a self-regulatory mechanism: ADPR binding triggers NUDT9-H tetramerization, promoting channel opening, while subsequent hydrolysis reduces local ADPR, inducing channel closure. We further demonstrated how the NUDT9-H domain has evolved from a structurally semi-independent ADP-ribose hydrolase module in early species to a fully integrated component of a gating ring essential for channel activation in advanced species.

11.
Bioorg Med Chem ; 106: 117754, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728869

RESUMEN

To improve the biodistribution of the drug in the tumor, a supramolecular prodrug of SN38 was fabricated in situ between endogenous albumin and SN38 prodrug modified with semaglutide side chain. Firstly, SN38 was conjugated with semaglutide side chain and octadecanedioic acid via glycine linkers to obtain SI-Gly-SN38 and OA-Gly-SN38 prodrugs, respectively. Both SI-Gly-SN38 and OA-Gly-SN38 exhibited excellent stability in PBS for over 24 h. Due to the strong binding affinity of the semaglutide side chain with albumin, the plasma half-life of SI-Gly-SN38 was 2.7 times higher than that of OA-Gly-SN38. Furthermore, with addition of HSA, the fluorescence intensity of SI-Gly-SN38 was 4 times higher than that of OA-Gly-SN38, confirming its strong binding capability with HSA. MTT assay showed that the cytotoxicity of SI-Gly-SN38 and OA-Gly-SN38 was higher than that of Irinotecan. Even incubated with HSA, the SI-Gly-SN38 and OA-Gly-SN38 still maintained high cytotoxicity, indicating minimal influence of HSA on their cytotoxicity. In vivo pharmacokinetic studies demonstrated that the circulation half-life of SI-Gly-SN38 was twice that of OA-Gly-SN38. SI-Gly-SN38 exhibited significantly reduced accumulation in the lungs, being only 0.23 times that of OA-Gly-SN38. The release of free SN38 in the lungs from SI-Gly-SN38 was only 0.4 times that from OA-Gly-SN38 and Irinotecan. The SI-Gly-SN38 showed the highest accumulation in tumors. The tumor inhibition rate of SI-Gly-SN38 was 6.42% higher than that of OA-Gly-SN38, and 8.67% higher than that of Irinotecan, respectively. These results indicate that the supramolecular prodrug delivery system can be constructed between SI-Gly-SN38 and endogenous albumin, which improves drug biodistribution in vivo, enhances tumor accumulation, and plays a crucial role in tumor growth inhibition.


Asunto(s)
Irinotecán , Profármacos , Irinotecán/química , Irinotecán/farmacología , Profármacos/química , Profármacos/farmacología , Profármacos/síntesis química , Animales , Humanos , Ratones , Distribución Tisular , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Ratones Desnudos , Albúminas/química , Masculino , Relación Estructura-Actividad , Albúmina Sérica Humana/química , Péptidos Similares al Glucagón
12.
Med Biol Eng Comput ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775870

RESUMEN

The current diagnosis of diabetic retinopathy is based on fundus images and clinical experience. However, considering the ineffectiveness and non-portability of medical devices, we aimed to develop a diagnostic model for diabetic retinopathy based on glucose series data from the wearable continuous glucose monitoring system. Therefore, this study developed a novel method, i.e., double deep latent autoencoder, for exploring glycemic variability influence from multi-day glucose data for diabetic retinopathy. Specifically, the model proposed in this research could encode continuous glucose sensor data with non-continuous and variable length via the integration of a data reorganization module and a novel encoding module with fragmented-missing-wise objective function. Additionally, the model implements a double deep autoencoder, which integrated convolutional neural network, long short-term memory, to jointly capturing the inter-day and intra-day glucose latent features from glucose series. The effectiveness of the proposed model is evaluated through a cross-validation method to clinical datasets of 765 type 2 diabetes patients. The proposed method achieves the highest accuracy value (0.89), precision value (0.88), and F1 score (0.73). The results suggest that our model can be used to remotely diagnose and screen for diabetic retinopathy by learning potential features of glucose series data collected by wearable continuous glucose monitoring systems.

14.
Front Mol Biosci ; 11: 1394585, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751445

RESUMEN

Objective: Breast cancer is highly heterogeneous, presenting challenges in prognostic assessment. Developing a universally applicable prognostic model could simplify clinical decision-making. This study aims to develop and validate a novel breast cancer prognosis model using coagulation-related genes with broad clinical applicability. Methods: A total of 203 genes related to coagulation were obtained from the KEGG database, and the mRNA data of 1,099 tumor tissue samples and 572 samples of normal tissue were retrieved from the TCGA-BRCA cohort and GTEx databases. The R package "limma" was utilized to detect variations in gene expression related to coagulation between the malignancies and normal tissue. A model was constructed in the TCGA cohort through a multivariable Cox regression analysis, followed by validation using the GSE42568 dataset as the testing set. Constructing a nomogram incorporating clinical factors to enhance the predictive capacity of the model. Utilizing the ESTIMATE algorithm to investigate the immune infiltration levels in groups with deferent risk. Performing drug sensitivity analysis using the "oncoPredict" package. Results: A risk model consisting of six coagulation-associated genes (SERPINA1, SERPINF2, C1S, CFB, RASGRP1, and TLN2) was created and successfully tested for validation. Identified were 6 genes that serve as protective factors in the model's development. Kaplan-Meier curves revealed a worse prognosis in the high-risk group compared to the low-risk group. The ROC analysis showed that the model accurately forecasted the overall survival (OS) of breast cancer patients at 1, 3, and 5 years. Nomogram accompanied by calibration curves can also provide better guidance for clinical decision-making. The low-risk group is more likely to respond well to immunotherapy, whereas the high-risk group may show improved responses to Gemcitabine treatment. Furthermore, individuals in distinct risk categories displayed different responses to various medications within the identical therapeutic category. Conclusion: We established a breast cancer prognostic model incorporating six coagulation-associated genes and explored its clinical utility. This model offers valuable insights for clinical decision-making and drug selection in breast cancer patients, contributing to personalized and precise treatment advancements.

15.
Front Cell Dev Biol ; 12: 1359451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694823

RESUMEN

Immunotherapy has changed the landscape of treatment options for patients with hepatocellular cancer. Checkpoint inhibitors are now standard of care for patients with advanced tumours, yet the majority remain resistant to this therapy and urgent approaches are needed to boost the efficacy of these agents. Targeting the liver endothelial cells, as the orchestrators of immune cell recruitment, within the tumour microenvironment of this highly vascular cancer could potentially boost immune cell infiltration. We demonstrate the successful culture of primary human liver endothelial cells in organ-on-a-chip technology followed by perfusion of peripheral blood mononuclear cells. We confirm, with confocal and multiphoton imaging, the capture and adhesion of immune cells in response to pro-inflammatory cytokines in this model. This multicellular platform sets the foundation for testing the efficacy of new therapies in promoting leukocyte infiltration across liver endothelium as well as a model for testing cell therapy, such as chimeric antigen receptor (CAR)-T cell, capture and migration across human liver endothelium.

16.
Cancer Biol Med ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38712819

RESUMEN

OBJECTIVE: To investigate the impact of metabolic dysfunction-associated steatotic liver disease (MASLD) on the efficacy of immune checkpoint inhibitor (ICI)-based therapy in patients with chronic hepatitis B (CHB)-related hepatocellular carcinoma (HCC). METHODS: A total of 155 patients with CHB-related HCC who received ICI-based therapy (in the Department of Hepatology, Tianjin Second People's Hospital and Department of Hepatobiliary Oncology, Tianjin Medical University Cancer Institute & Hospital) between April 2021 and December 2023 were evaluated. Patients were divided into two groups: MASLD concurrent with CHB [MASLD-CHB] (n = 38), and CHB (n = 117). RESULTS: The median progression-free survival (PFS, 6.9 months vs. 9.3 months; P = 0.001), progressive disease (57.89% vs. 37.61%; P = 0.028), and disease control rate (42.11% vs. 62.39%; P = 0. 028) in the MASLD-CHB group were significantly worse than the CHB group. The median overall survival was not attained. The percentage of CD4+PD1+ (17. 56% vs. 8.89%; P < 0.001) and CD8+PD1+ T cells (10.50% vs. 7.42%; P = 0.005) in patient samples from the MASLD-CHB group were significantly higher than the CHB group. Concurrent MASLD [hazard ratio (HR) = 1.921; 95% CI, 1.138-3.245; P = 0.015] and alpha-fetoprotein levels after 3 months of treatment (HR = 2.412; 95% CI, 1.360-4.279; P = 0.003) were independent risk factors for PFS in all patients. CONCLUSIONS: ICI-based therapy in patients with CHB-related HCC and concurrent MASLD resulted in poorer efficacy and shorter PFS compared to patients with CHB-related HCC alone.

17.
Br J Cancer ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760444

RESUMEN

BACKGROUND: Risk of recurrence and progression of ductal carcinoma in situ (DCIS) to invasive cancer remains uncertain, emphasizing the need for developing predictive biomarkers of aggressive DCIS. METHODS: Human cell lines and mouse models of disease progression were analyzed for candidate risk predictive biomarkers identified and validated in two independent DCIS cohorts. RESULTS: RNA profiling of normal mammary and DCIS tissues (n = 48) revealed that elevated SOX11 expression correlates with MKI67, EZH2, and DCIS recurrence score. The 21T human cell line model of DCIS progression to invasive cancer and two mouse models developing mammary intraepithelial neoplasia confirmed the findings. AKT activation correlated with chromatin accessibility and EZH2 enrichment upregulating SOX11 expression. AKT and HER2 inhibitors decreased SOX11 expression along with diminished mammosphere formation. SOX11 was upregulated in HER2+ and basal-like subtypes (P < 0.001). Longitudinal DCIS cohort (n = 194) revealed shorter recurrence-free survival in SOX11+ than SOX11- patients (P = 0.0056 in all DCIS; P < 0.0001 in HER2+ subtype) associated with increased risk of ipsilateral breast event/IBE (HR = 1.9, 95%CI = 1.2-2.9; P = 0.003). DISCUSSION: Epigenetic activation of SOX11 drives recurrence of DCIS and progression to invasive cancer, suggesting SOX11 as a predictive biomarker of IBE.

18.
Surgery ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38762380

RESUMEN

BACKGROUND: Sepsis, characterized by dysregulated host responses to infection, remains a critical global health concern, with high morbidity and mortality rates. The gastrointestinal tract assumes a pivotal role in sepsis due to its dual functionality as a protective barrier against injurious agents and as a regulator of motility. Dexmedetomidine, an α2-adrenergic agonist commonly employed in critical care settings, exhibits promise in influencing the maintenance of intestinal barrier integrity during sepsis. However, its impact on intestinal motility, a crucial component of intestinal function, remains incompletely understood. METHODS: In this study, we investigated dexmedetomidine's multifaceted effects on intestinal barrier function and motility during sepsis using both in vitro and in vivo models. Sepsis was induced in Sprague-Dawley rats via cecal ligation and puncture. Rats were treated with dexmedetomidine post-cecal ligation and puncture, and various parameters were assessed to elucidate dexmedetomidine's impact. RESULTS: Our findings revealed a dichotomous influence of dexmedetomidine on intestinal physiology. In septic rats, dexmedetomidine administration resulted in improved intestinal barrier integrity, as evidenced by reduced mucosal hyper-permeability and morphological alterations. However, a contrasting effect was observed on intestinal motility, as dexmedetomidine treatment inhibited both the frequency and amplitude of contractions in isolated intestinal strips and decreased the distance of ink migration in vivo. Additionally, dexmedetomidine suppressed the secretion of pro-motility hormones while having no influence on hormones that inhibit intestinal peristalsis. CONCLUSION: The study revealed that during sepsis, dexmedetomidine exhibited protective effects on barrier integrity, although concurrently it hindered intestinal motility, partly attributed to its modulation of pro-motility hormone secretion. These findings underscore the necessity of a comprehensive understanding of dexmedetomidine's impact on multiple facets of gastrointestinal physiology in sepsis management, offering potential implications for therapeutic strategies and patient care.

19.
Int J Biol Macromol ; : 132408, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38754683

RESUMEN

Porcine Epidemic Diarrhea Virus (PEDV) is a highly contagious virus that causes Porcine Epidemic Diarrhea (PED). This enteric disease results in high mortality rates in piglets, leading to significant financial losses in the pig industry. However, vaccines cannot provide sufficient protection against epidemic strains. Spike (S) protein exposed on the surface of virion mediates PEDV entry into cells. Our findings imply that matrine (MT), a naturally occurring alkaloid, inhibits PEDV infection targeting S protein of virions and biological process of cells. The GLY434 residue in the autodocking site of the S protein and MT conserved based on sequence comparison. This study provides a comprehensive analysis of viral attachment, entry, and virucidal effects to investigate how that MT inhibits virus replication. MT inhibits PEDV attachment and entry by targeting S protein. MT was added to cells before, during, or after infection, it exhibits anti-PEDV activities and viricidal effects. Network pharmacology focuses on addressing causal mechanisms rather than just treating symptoms. We identified the key genes and screened the cell apoptosis involved in the inhibition of MT on PEDV infection in network pharmacology. MT significantly promotes cell apoptosis in PEDV-infected cells to inhibit PEDV infection by activating the MAPK signaling pathway. Collectively, we provide the biological foundations for the development of single components of traditional Chinese medicine to inhibit PEDV infection and spread.

20.
Chemistry ; : e202400803, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752562

RESUMEN

To meet the demand for higher energy density in lithium-ion batteries and expand their application range, coupling lithium metal anodes with high-voltage cathodes is an ideal solution. However, the compatibility between lithium metal batteries and electrolytes affects their applicability. In this study, proposes a locally concentrated electrolyte based on ethyl acetate (EA) as the solvent, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the lithium salt, and lithium difluorooxoborate (LiDFOB) as a sacrificial agent to enhance the low-temperature and high-voltage endurance of Li//Lithium cobalt oxide (LCO) batteries. The Li//LCO battery can operate within the voltage range of 3 to 4.5 V, with an initial discharge specific capacity of 174.5 mAh g-1 at 20 oC. At -40 oC, after 200 cycles, the capacity retention rate is 87.7%. It can operate under extreme conditions of -70 oC, with a discharge specific capacity of 112.6 mAh g-1. Additionally, LCO//HC batteries using this electrolyte demonstrate excellent performance. Present work provides a new perspective for the optimization of electrolytes for low-temperature lithium-ion batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA