Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1359451, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694823

RESUMEN

Immunotherapy has changed the landscape of treatment options for patients with hepatocellular cancer. Checkpoint inhibitors are now standard of care for patients with advanced tumours, yet the majority remain resistant to this therapy and urgent approaches are needed to boost the efficacy of these agents. Targeting the liver endothelial cells, as the orchestrators of immune cell recruitment, within the tumour microenvironment of this highly vascular cancer could potentially boost immune cell infiltration. We demonstrate the successful culture of primary human liver endothelial cells in organ-on-a-chip technology followed by perfusion of peripheral blood mononuclear cells. We confirm, with confocal and multiphoton imaging, the capture and adhesion of immune cells in response to pro-inflammatory cytokines in this model. This multicellular platform sets the foundation for testing the efficacy of new therapies in promoting leukocyte infiltration across liver endothelium as well as a model for testing cell therapy, such as chimeric antigen receptor (CAR)-T cell, capture and migration across human liver endothelium.

2.
NPJ Regen Med ; 9(1): 19, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724586

RESUMEN

Cell therapies are emerging as promising treatments for a range of liver diseases but translational bottlenecks still remain including: securing and assessing the safe and effective delivery of cells to the disease site; ensuring successful cell engraftment and function; and preventing immunogenic responses. Here we highlight three therapies, each utilising a different cell type, at different stages in their clinical translation journey: transplantation of multipotent mesenchymal stromal/signalling cells, hepatocytes and macrophages. To overcome bottlenecks impeding clinical progression, we advocate for wider use of mechanistic in silico modelling approaches. We discuss how in silico approaches, alongside complementary experimental approaches, can enhance our understanding of the mechanisms underlying successful cell delivery and engraftment. Furthermore, such combined theoretical-experimental approaches can be exploited to develop novel therapies, address safety and efficacy challenges, bridge the gap between in vitro and in vivo model systems, and compensate for the inherent differences between animal model systems and humans. We also highlight how in silico model development can result in fewer and more targeted in vivo experiments, thereby reducing preclinical costs and experimental animal numbers and potentially accelerating translation to the clinic. The development of biologically-accurate in silico models that capture the mechanisms underpinning the behaviour of these complex systems must be reinforced by quantitative methods to assess cell survival post-transplant, and we argue that non-invasive in vivo imaging strategies should be routinely integrated into transplant studies.

3.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579685

RESUMEN

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Proteínas Señalizadoras YAP , Animales , Humanos , Ratones , Proliferación Celular , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP/agonistas , Proteínas Señalizadoras YAP/efectos de los fármacos , Proteínas Señalizadoras YAP/metabolismo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
4.
iScience ; 26(10): 107966, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37810232

RESUMEN

Liver sinusoidal endothelial cells (LSEC) undergo significant phenotypic change in chronic liver disease (CLD), and yet the factors that drive this process and the impact on their function as a vascular barrier and gatekeeper for immune cell recruitment are poorly understood. Plasmalemma-vesicle-associated protein (PLVAP) has been characterized as a marker of LSEC in CLD; notably we found that PLVAP upregulation strongly correlated with markers of tissue senescence. Furthermore, exposure of human LSEC to the senescence-associated secretory phenotype (SASP) led to a significant upregulation of PLVAP. Flow-based assays demonstrated that SASP-driven leukocyte recruitment was characterized by paracellular transmigration of monocytes while the majority of lymphocytes migrated transcellularly. Knockdown studies confirmed that PLVAP selectively supported monocyte transmigration mediated through PLVAP's impact on LSEC permeability by regulating phospho-VE-cadherin expression and endothelial gap formation. PLVAP may therefore represent an endothelial target that selectively shapes the senescence-mediated immune microenvironment in liver disease.

5.
Nat Commun ; 14(1): 2066, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045811

RESUMEN

The thymus medulla is a key site for immunoregulation and tolerance, and its functional specialisation is achieved through the complexity of medullary thymic epithelial cells (mTEC). While the importance of the medulla for thymus function is clear, the production and maintenance of mTEC diversity remains poorly understood. Here, using ontogenetic and inducible fate-mapping approaches, we identify mTEC-restricted progenitors as a cytokeratin19+ (K19+) TEC subset that emerges in the embryonic thymus. Importantly, labelling of a single cohort of K19+ TEC during embryogenesis sustains the production of multiple mTEC subsets into adulthood, including CCL21+ mTEClo, Aire+ mTEChi and thymic tuft cells. We show K19+ progenitors arise prior to the acquisition of multiple mTEC-defining features including RANK and CCL21 and are generated independently of the key mTEC regulator, Relb. In conclusion, we identify and define a multipotent mTEC progenitor that emerges during embryogenesis to support mTEC diversity into adult life.


Asunto(s)
Tolerancia Inmunológica , Queratina-19 , Timo , Animales , Ratones , Diferenciación Celular , Células Epiteliales , Ratones Endogámicos C57BL , Células Madre
6.
Sci Transl Med ; 14(674): eabj4375, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36475903

RESUMEN

Liver transplantation is the only curative option for patients with end-stage liver disease. Despite improvements in surgical techniques, nonanastomotic strictures (characterized by the progressive loss of biliary tract architecture) continue to occur after liver transplantation, negatively affecting liver function and frequently leading to graft loss and retransplantation. To study the biological effects of organ preservation before liver transplantation, we generated murine models that recapitulate liver procurement and static cold storage. In these models, we explored the response of cholangiocytes and hepatocytes to cold storage, focusing on responses that affect liver regeneration, including DNA damage, apoptosis, and cellular senescence. We show that biliary senescence was induced during organ retrieval and exacerbated during static cold storage, resulting in impaired biliary regeneration. We identified decoy receptor 2 (DCR2)-dependent responses in cholangiocytes and hepatocytes, which differentially affected the outcome of those populations during cold storage. Moreover, CRISPR-mediated DCR2 knockdown in vitro increased cholangiocyte proliferation and decreased cellular senescence but had the opposite effect in hepatocytes. Using the p21KO model to inhibit senescence onset, we showed that biliary tract architecture was better preserved during cold storage. Similar results were achieved by administering senolytic ABT737 to mice before procurement. Last, we perfused senolytics into discarded human donor livers and showed that biliary architecture and regenerative capacities were better preserved. Our results indicate that cholangiocytes are susceptible to senescence and identify the use of senolytics and the combination of senotherapies and machine-perfusion preservation to prevent this phenotype and reduce the incidence of biliary injury after transplantation.


Asunto(s)
Sistema Biliar , Humanos , Ratones , Animales , Constricción Patológica , Senescencia Celular
7.
Cell Stem Cell ; 29(3): 355-371.e10, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35245467

RESUMEN

Biliary diseases can cause inflammation, fibrosis, bile duct destruction, and eventually liver failure. There are no curative treatments for biliary disease except for liver transplantation. New therapies are urgently required. We have therefore purified human biliary epithelial cells (hBECs) from human livers that were not used for liver transplantation. hBECs were tested as a cell therapy in a mouse model of biliary disease in which the conditional deletion of Mdm2 in cholangiocytes causes senescence, biliary strictures, and fibrosis. hBECs are expandable and phenotypically stable and help restore biliary structure and function, highlighting their regenerative capacity and a potential alternative to liver transplantation for biliary disease.


Asunto(s)
Trasplante de Hígado , Animales , Conductos Biliares/patología , Células Epiteliales/patología , Fibrosis , Humanos , Donadores Vivos , Ratones
8.
Sci Signal ; 14(688)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158399

RESUMEN

In the adult liver, a population of facultative progenitor cells called biliary epithelial cells (BECs) proliferate and differentiate into cholangiocytes and hepatocytes after injury, thereby restoring liver function. In mammalian models of chronic liver injury, Notch signaling is essential for bile duct formation from these cells. However, the continual proliferation of BECs and differentiation of hepatocytes in these models have limited their use for determining whether Notch signaling is required for BECs to replenish hepatocytes after injury in the mammalian liver. Here, we used a temporally restricted model of hepatic repair in which large-scale hepatocyte injury and regeneration are initiated through the acute loss of Mdm2 in hepatocytes, resulting in the rapid, coordinated proliferation of BECs. We found that transient, early activation of Notch1- and Notch3-mediated signaling and entrance into the cell cycle preceded the phenotypic expansion of BECs into hepatocytes. Notch inhibition reduced BEC proliferation, which resulted in failure of BECs to differentiate into hepatocytes, indicating that Notch-dependent expansion of BECs is essential for hepatocyte regeneration. Notch signaling increased the abundance of the insulin-like growth factor 1 receptor (IGF1R) in BECs, and activating IGFR signaling increased BEC numbers but suppressed BEC differentiation into hepatocytes. These results suggest that different signaling mechanisms control BEC expansion and hepatocyte differentiation.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Regeneración Hepática , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Células Epiteliales , Hepatocitos , Factor I del Crecimiento Similar a la Insulina/genética , Hígado
9.
NPJ Regen Med ; 6(1): 28, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039998

RESUMEN

The stem cell ability to self-renew and lead regeneration relies on the balance of complex signals in their microenvironment. The identification of modulators of hepatic progenitor cell (HPC) activation is determinant for liver regeneration and may improve cell transplantation for end-stage liver disease. This investigation used different models to point out the Nuclear factor (erythroid-derived 2)-like 2 (NRF2) as a key regulator of the HPC fate. We initially proved that in vivo models of biliary epithelial cells (BECs)/HPC activation show hepatic oxidative stress, which activates primary BECs/HPCs in vitro. NRF2 downregulation and silencing were associated with morphological, phenotypic, and functional modifications distinctive of differentiated cells. Furthermore, NRF2 activation in the biliary tract repressed the ductular reaction in injured liver. To definitely assess the importance of NRF2 in HPC biology, we applied a xenograft model by inhibiting NRF2 in the human derived HepaRG cell line and transplanting into SCID/beige mice administered with anti-Fas antibody to induce hepatocellular apoptosis; this resulted in effective human hepatocyte repopulation with reduced liver injury. To conclude, NRF2 inhibition leads to the activation and differentiation of liver progenitors. This redox-dependent transcription factor represents a potential target to regulate the commitment of undifferentiated hepatic progenitors into specific lineages.

10.
Hepatology ; 73(1): 247-267, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32222998

RESUMEN

BACKGROUND AND AIMS: Organoids provide a powerful system to study epithelia in vitro. Recently, this approach was applied successfully to the biliary tree, a series of ductular tissues responsible for the drainage of bile and pancreatic secretions. More precisely, organoids have been derived from ductal tissue located outside (extrahepatic bile ducts; EHBDs) or inside the liver (intrahepatic bile ducts; IHBDs). These organoids share many characteristics, including expression of cholangiocyte markers such as keratin (KRT) 19. However, the relationship between these organoids and their tissues of origin, and to each other, is largely unknown. APPROACH AND RESULTS: Organoids were derived from human gallbladder, common bile duct, pancreatic duct, and IHBDs using culture conditions promoting WNT signaling. The resulting IHBD and EHBD organoids expressed stem/progenitor markers leucine-rich repeat-containing G-protein-coupled receptor 5/prominin 1 and ductal markers KRT19/KRT7. However, RNA sequencing revealed that organoids conserve only a limited number of regional-specific markers corresponding to their location of origin. Of particular interest, down-regulation of biliary markers and up-regulation of cell-cycle genes were observed in organoids. IHBD and EHBD organoids diverged in their response to WNT signaling, and only IHBDs were able to express a low level of hepatocyte markers under differentiation conditions. CONCLUSIONS: Taken together, our results demonstrate that differences exist not only between extrahepatic biliary organoids and their tissue of origin, but also between IHBD and EHBD organoids. This information may help to understand the tissue specificity of cholangiopathies and also to identify targets for therapeutic development.


Asunto(s)
Conductos Biliares Extrahepáticos/citología , Conductos Biliares Intrahepáticos/citología , Células Epiteliales/citología , Organoides/fisiología , Animales , Bilis , Conductos Biliares Extrahepáticos/fisiología , Conductos Biliares Intrahepáticos/fisiología , Diferenciación Celular , Conducto Colédoco/citología , Células Epiteliales/fisiología , Vesícula Biliar/citología , Regulación de la Expresión Génica , Humanos , Queratina-19/análisis , Hígado/fisiología , Ratones , RNA-Seq , Obtención de Tejidos y Órganos
11.
Proc Natl Acad Sci U S A ; 117(3): 1678-1688, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31915293

RESUMEN

Primary human hepatocytes (PHHs) are an essential tool for modeling drug metabolism and liver disease. However, variable plating efficiencies, short lifespan in culture, and resistance to genetic manipulation have limited their use. Here, we show that the pyrrolizidine alkaloid retrorsine improves PHH repopulation of chimeric mice on average 10-fold and rescues the ability of even poorly plateable donor hepatocytes to provide cells for subsequent ex vivo cultures. These mouse-passaged (mp) PHH cultures overcome the marked donor-to-donor variability of cryopreserved PHH and remain functional for months as demonstrated by metabolic assays and infection with hepatitis B virus and Plasmodium falciparum mpPHH can be efficiently genetically modified in culture, mobilized, and then recultured as spheroids or retransplanted to create highly humanized mice that carry a genetically altered hepatocyte graft. Together, these advances provide flexible tools for the study of human liver disease and evaluation of hepatocyte-targeted gene therapy approaches.


Asunto(s)
Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatopatías/genética , Alcaloides de Pirrolicidina/farmacología , Animales , Trasplante de Células , Quimera , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Hepatitis B , Virus de la Hepatitis B , Hepatocitos/trasplante , Proteínas de Homeodominio/genética , Humanos , Hidrolasas/genética , Subunidad gamma Común de Receptores de Interleucina/genética , Hígado/patología , Hepatopatías/patología , Malaria , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Plasmodium falciparum
12.
Hepatology ; 71(3): 972-989, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31330051

RESUMEN

BACKGROUND AND AIMS: Mechanisms underlying the repair of extrahepatic biliary tree (EHBT) after injury have been scarcely explored. The aims of this study were to evaluate, by using a lineage tracing approach, the contribution of peribiliary gland (PBG) niche in the regeneration of EHBT after damage and to evaluate, in vivo and in vitro, the signaling pathways involved. APPROACH AND RESULTS: Bile duct injury was induced by the administration of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 14 days to Krt19Cre TdTomatoLSL mice. Human biliary tree stem/progenitor cells (BTSC) within PBGs were isolated from EHBT obtained from liver donors. Hepatic duct samples (n = 10) were obtained from patients affected by primary sclerosing cholangitis (PSC). Samples were analyzed by histology, immunohistochemistry, western blotting, and polymerase chain reaction. DDC administration causes hyperplasia of PBGs and periductal fibrosis in EHBT. A PBG cell population (Cytokeratin19- /SOX9+ ) is involved in the renewal of surface epithelium in injured EHBT. The Wnt signaling pathway triggers human BTSC proliferation in vitro and influences PBG hyperplasia in vivo in the DDC-mediated mouse biliary injury model. The Notch signaling pathway activation induces BTSC differentiation in vitro toward mature cholangiocytes and is associated with PBG activation in the DDC model. In human PSC, inflammatory and stromal cells trigger PBG activation through the up-regulation of the Wnt and Notch signaling pathways. CONCLUSIONS: We demonstrated the involvement of PBG cells in regenerating the injured biliary epithelium and identified the signaling pathways driving BTSC activation. These results could have relevant implications on the pathophysiology and treatment of cholangiopathies.


Asunto(s)
Sistema Biliar/fisiopatología , Colangitis Esclerosante/fisiopatología , Regeneración/fisiología , Nicho de Células Madre/fisiología , Adulto , Anciano , Animales , Sistema Biliar/citología , Diferenciación Celular , Colangitis Esclerosante/terapia , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Piridinas/toxicidad , Receptores Notch/fisiología , Vía de Señalización Wnt/fisiología
13.
Expert Rev Gastroenterol Hepatol ; 13(7): 623-631, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31092049

RESUMEN

Introduction: Liver disease is an increasing cause of worldwide mortality, and currently the only curative treatment for end-stage liver disease is whole organ allograft transplantation. Whilst this is an effective treatment, there is a shortage of suitable grafts and consequently some patients die whilst on the waiting list. Cell therapy provides an alternative treatment to increase liver function and potentially ameliorate fibrosis. Areas covered: In this review, we discuss the different cellular sources for therapy investigated to date in humans including mature hepatocytes, hematopoietic stem cells, mesenchymal stromal cells and hepatic progenitor cells. Cells investigated in animals include embryonic stem cells, induced pluripotent stem cells and directly reprogrammed cells. We then appraise the experience and evidence base underlying each cell type. Expert opinion: We discuss how this field may evolve in the years to come focusing on opportunities to enhance the intrinsic regenerative response with therapeutic targets and cell therapies. Growing expertise in tissue engineering will likely lead to increasingly complex bio-reactors and bio-artificial livers, which open a further avenue to restore liver function and delay or prevent the need for transplantation.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Hepatopatías/terapia , Trasplante de Células Madre , Animales , Humanos
14.
World J Gastroenterol ; 25(9): 1037-1049, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30862993

RESUMEN

The liver has a high regenerative capacity after acute liver injury, but this is often impaired during chronic liver injury. The existence of a dedicated liver stem cell population that acts as a source of regeneration during chronic liver injury has been controversial. Recent advances in transgenic models and cellular reprogramming have provided new insights into the plasticity of the liver epithelium and directions for the development of future therapies. This article will highlight recent findings about the cellular source of regeneration during liver injury and the advances in promoting liver regeneration.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Regeneración Hepática/fisiología , Hígado/fisiología , Células Madre/fisiología , Animales , Reprogramación Celular/fisiología , Epitelio/fisiología , Hepatocitos/fisiología , Humanos , Hígado/citología , Modelos Animales
15.
Hepatology ; 69(2): 742-759, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30215850

RESUMEN

Liver regeneration after injury is normally mediated by proliferation of hepatocytes, although recent studies have suggested biliary epithelial cells (BECs) can differentiate into hepatocytes during severe liver injury when hepatocyte proliferation is impaired. We investigated the effect of hepatocyte-specific ß-catenin deletion in recovery from severe liver injury and BEC-to-hepatocyte differentiation. To induce liver injury, we administered choline-deficient, ethionine-supplemented (CDE) diet to three different mouse models, the first being mice with deletion of ß-catenin in both BECs and hepatocytes (Albumin-Cre; Ctnnb1flox/flox mice). In our second model, we performed hepatocyte lineage tracing by injecting Ctnnb1flox/flox ; Rosa-stopflox/flox -EYFP mice with the adeno-associated virus serotype 8 encoding Cre recombinase under the control of the thyroid binding globulin promoter, a virus that infects only hepatocytes. Finally, we performed BEC lineage tracing via Krt19-CreERT ; Rosa-stopflox/flox -tdTomato mice. To observe BEC-to-hepatocyte differentiation, mice were allowed to recover on normal diet following CDE diet-induced liver injury. Livers were collected from all mice and analyzed by quantitative real-time polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence. We show that mice with lack of ß-catenin in hepatocytes placed on the CDE diet develop severe liver injury with impaired hepatocyte proliferation, creating a stimulus for BECs to differentiate into hepatocytes. In particular, we use both hepatocyte and BEC lineage tracing to show that BECs differentiate into hepatocytes, which go on to repopulate the liver during long-term recovery. Conclusion: ß-catenin is important for liver regeneration after CDE diet-induced liver injury, and BEC-derived hepatocytes can permanently incorporate into the liver parenchyma to mediate liver regeneration.


Asunto(s)
Diferenciación Celular , Hepatocitos/fisiología , Hepatopatías/fisiopatología , beta Catenina/fisiología , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Hígado/patología , Hepatopatías/patología , Regeneración Hepática , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , beta Catenina/genética
16.
Stem Cells Transl Med ; 8(3): 271-284, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30394698

RESUMEN

We describe a novel therapeutic approach for cirrhosis using mesenchymal stem cells (MSCs) and colony-stimulating factor-1-induced bone marrow-derived macrophages (id-BMMs) and analyze the mechanisms underlying fibrosis improvement and regeneration. Mouse MSCs and id-BMMs were cultured from mouse bone marrow and their interactions analyzed in vitro. MSCs, id-BMMs, and a combination therapy using MSCs and id-BMMs were administered to mice with CCl4 -induced cirrhosis. Fibrosis regression, liver regeneration, and liver-migrating host cells were evaluated. Administered cell behavior was also tracked by intravital imaging. In coculture, MSCs induced switching of id-BMMs toward the M2 phenotype with high phagocytic activity. In vivo, the combination therapy reduced liver fibrosis (associated with increased matrix metalloproteinases expression), increased hepatocyte proliferation (associated with increased hepatocyte growth factor, vascular endothelial growth factor, and oncostatin M in the liver), and reduced blood levels of liver enzymes, more effectively than MSCs or id-BMMs monotherapy. Intravital imaging showed that after combination cell administration, a large number of id-BMMs, which phagocytosed hepatocyte debris and were retained in the liver for more than 7 days, along with a few MSCs, the majority of which were trapped in the lung, migrated to the fibrotic area in the liver. Host macrophages and neutrophils infiltrated after combination therapy and contributed to liver fibrosis regression and promoted regeneration along with administered cells. Indirect effector MSCs and direct effector id-BMMs synergistically improved cirrhosis along with host cells in mice. These studies pave the way for new treatments for cirrhosis. Stem Cells Translational Medicine 2019;8:271&284.


Asunto(s)
Cirrosis Hepática/terapia , Macrófagos/citología , Células Madre Mesenquimatosas/citología , Animales , Proliferación Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Hepatocitos/fisiología , Hígado/fisiología , Regeneración Hepática/fisiología , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología
17.
Transplantation ; 102(10): 1587-1588, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30247437
18.
Sci Transl Med ; 10(454)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111642

RESUMEN

Liver injury results in rapid regeneration through hepatocyte proliferation and hypertrophy. However, after acute severe injury, such as acetaminophen poisoning, effective regeneration may fail. We investigated how senescence may underlie this regenerative failure. In human acute liver disease, and murine models, p21-dependent hepatocellular senescence was proportionate to disease severity and was associated with impaired regeneration. In an acetaminophen injury mouse model, a transcriptional signature associated with the induction of paracrine senescence was observed within 24 hours and was followed by one of impaired proliferation. In mouse genetic models of hepatocyte injury and senescence, we observed transmission of senescence to local uninjured hepatocytes. Spread of senescence depended on macrophage-derived transforming growth factor-ß1 (TGFß1) ligand. In acetaminophen poisoning, inhibition of TGFß receptor 1 (TGFßR1) improved mouse survival. TGFßR1 inhibition reduced senescence and enhanced liver regeneration even when delivered beyond the therapeutic window for treating acetaminophen poisoning. This mechanism, in which injury-induced senescence impairs liver regeneration, is an attractive therapeutic target for developing treatments for acute liver failure.


Asunto(s)
Senescencia Celular , Regeneración Hepática , Hígado/lesiones , Hígado/fisiopatología , Comunicación Paracrina , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/patología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Necrosis , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
20.
Nat Commun ; 9(1): 1020, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523787

RESUMEN

Cellular senescence is a mechanism that provides an irreversible barrier to cell cycle progression to prevent undesired proliferation. However, under pathological circumstances, senescence can adversely affect organ function, viability and regeneration. We have developed a mouse model of biliary senescence, based on the conditional deletion of Mdm2 in bile ducts under the control of the Krt19 promoter, that exhibits features of biliary disease. Here we report that senescent cholangiocytes induce profound alterations in the cellular and signalling microenvironment, with recruitment of myofibroblasts and macrophages causing collagen deposition, TGFß production and induction of senescence in surrounding cholangiocytes and hepatocytes. Finally, we study how inhibition of TGFß-signalling disrupts the transmission of senescence and restores liver function. We identify cellular senescence as a detrimental mechanism in the development of biliary injury. Our results identify TGFß as a potential therapeutic target to limit senescence-dependent aggravation in human cholangiopathies.


Asunto(s)
Conductos Biliares/lesiones , Conductos Biliares/patología , Senescencia Celular/fisiología , Colangitis Esclerosante/patología , Cirrosis Hepática Biliar/patología , Hígado/patología , Regeneración/fisiología , Animales , Células Cultivadas , Colangitis Esclerosante/terapia , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Hepatocitos/patología , Humanos , Queratina-19/genética , Cirrosis Hepática Biliar/terapia , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miofibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...