Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125702

RESUMEN

Soybean is a crucial crop globally, serving as a significant source of unsaturated fatty acids and protein in the human diet. However, further enhancements are required for the related genes that regulate soybean oil synthesis. In this study, 155 soybean germplasms were cultivated under three different environmental conditions, followed by phenotypic identification and genome-wide association analysis using simplified sequencing data. Genome-wide association analysis was performed using SLAF-seq data. A total of 36 QTLs were significantly associated with oil content (-log10(p) > 3). Out of the 36 QTLs associated with oil content, 27 exhibited genetic overlap with previously reported QTLs related to oil traits. Further transcriptome sequencing was performed on extreme high-low oil soybean varieties. Combined with transcriptome expression data, 22 candidate genes were identified (|log2FC| ≥ 3). Further haplotype analysis of the potential candidate genes showed that three potential candidate genes had excellent haplotypes, including Glyma.03G186200, Glyma.09G099500, and Glyma.18G248900. The identified loci harboring beneficial alleles and candidate genes likely contribute significantly to the molecular network's underlying marker-assisted selection (MAS) and oil content.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glycine max , Sitios de Carácter Cuantitativo , RNA-Seq , Semillas , Glycine max/genética , Glycine max/metabolismo , Estudio de Asociación del Genoma Completo/métodos , Semillas/genética , Semillas/metabolismo , RNA-Seq/métodos , Aceite de Soja/metabolismo , Aceite de Soja/genética , Haplotipos , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Fenotipo , Polimorfismo de Nucleótido Simple , Genoma de Planta , Aceites de Plantas/metabolismo , Genes de Plantas
2.
Theor Appl Genet ; 137(8): 178, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976061

RESUMEN

KEY MESSAGE: Three QTLs associated with low-temperature tolerance were identified by genome-wide association analysis, and 15 candidate genes were identified by haplotype analysis and gene expression analyses. Low temperature is a critical factor affecting the geographical distribution, growth, development, and yield of soybeans, with cold stress during seed germination leading to substantial productivity loss. In this study, an association panel comprising 260 soybean accessions was evaluated for four germination traits and four cold tolerance index traits, revealing extensive variation in cold tolerance. Genome-wide association study (GWAS) identified 10 quantitative trait nucleotides (QTNs) associated with cold tolerance, utilizing 30,799 single nucleotide polymorphisms (SNPs) and four GWAS models. Linkage disequilibrium (LD) analysis positioned these QTNs within three cold-tolerance quantitative trait loci (QTL) and, with QTL19-1, was positioned by three multi-locus models, underscoring its importance as a key QTL. Integrative haplotype analysis, supplemented by transcriptome analysis, uncovered 15 candidate genes. The haplotypes within the genes Glyma.18G044200, Glyma.18G044300, Glyma.18G044900, Glyma.18G045100, Glyma.19G222500, and Glyma.19G222600 exhibited significant phenotypic variations, with differential expression in materials with varying cold tolerance. The QTNs and candidate genes identified in this study offer substantial potential for marker-assisted selection and gene editing in breeding cold-tolerant soybeans, providing valuable insights into the genetic mechanisms underlying cold tolerance during soybean germination.


Asunto(s)
Frío , Germinación , Glycine max , Haplotipos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Germinación/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Estudios de Asociación Genética , Mapeo Cromosómico/métodos , Genes de Plantas
3.
Sensors (Basel) ; 24(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38793958

RESUMEN

Ion mobility spectrometry (IMS) has been widely studied and applied as an effective analytical technology for the on-site detection of volatile organic compounds (VOCs). Despite its superior selectivity compared with most gas sensors, its limited dynamic range is regarded as a major drawback, limiting its further application in quantitative measurements. In this work, we proposed a novel sample introduction method based on pulsed membrane adsorption, which effectively enhanced IMS's ability to measure analytes at higher concentrations. Taking N-methyl-2-pyrrolidone (NMP) as an example, this new sampling method expanded the dynamic range from 1 ppm to 200 ppm. The working principle and measurement strategy of this sampling method were also discussed, providing new insights for the design and application of IMS-based instruments.

4.
Small ; 20(33): e2401379, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38522026

RESUMEN

Phase transitions of Mn-based cathode materials associated with the charge and discharge process play a crucial role on the rate capability and cycle life of zinc ion batteries. Herein, a microscopic electrochemical failure mechanism of Zn-MnO2 batteries during the phase transitions from δ-MnO2 to λ-ZnMn2O4 is presented via systematic first-principle investigation. The initial insertion of Zn2+ intensifies the rearrangement of Mn. This is completed by the electrostatic repulsion and co-migration between guest and host ions, leading to the formation of λ-ZnMn2O4. The Mn relocation barrier for the λ-ZnMn2O4 formation path with 1.09 eV is significantly lower than the δ-MnO2 re-formation path with 2.14 eV, indicating the irreversibility of the layered-to-spinel transition. Together with the phase transition, the rearrangement of Mn elevates the Zn2+ migration barrier from 0.31 to 2.28 eV, resulting in poor rate performance. With the increase of charge-discharge cycles, irreversible and inactive λ-ZnMn2O4 products accumulate on the electrode, causing continuous capacity decay of the Zn-MnO2 battery.

5.
Angew Chem Int Ed Engl ; 63(16): e202319320, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38238261

RESUMEN

The chemistry of hypercoordination has been a subject of fundamental interest, especially for understanding structures that challenge conventional wisdom. The small ionic radii of Fe ions typically result in coordination numbers of 4 or 6 in stable Fe-bearing ionic compounds. While 8-coordinated Fe has been observed in highly compressed oxides, the pursuit of hypercoordinated Fe still faces significant challenges due to the complexity of synthesizing the anticipated compound with another suitable anion. Through first-principles simulation and advanced crystal structure prediction methods, we predict that an orthorhombic phase of FeF3 with exclusively 8-coordinated Fe is energetically stable above 18 GPa-a pressure more feasibly achieved compared to oxides. Inspired by this theoretical result, we conducted extensive experiments using a laser-heated diamond anvil cell technique to investigate the crystal structures of FeF3 at high-pressure conditions. We successfully synthesized the predicted orthorhombic phase of FeF3 at 46 GPa, as confirmed by in situ experimental X-ray diffraction data. This work establishes a new ionic compound featuring rare 8-coordinated Fe in a simple binary Fe-bearing system and paves the way for discovering Fe hypercoordination in similar systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...