Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Front Cell Dev Biol ; 12: 1406830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946798

RESUMEN

Background: Osteoarthritis (OA) knee patients have limited ability in physical function, or difficulties with physical tasks and activities may develop disability. This study aimed to observe the predictors of self-reported and performance-based physical function in patients with knee OA by analyzing the impacts of demographic, pathological, and muscle impairment factors. Methods: 135 knee OA patients participated in this study to complete self-reported questionnaires using Knee Injury and Osteoarthritis Outcome Score (KOOS). When measuring performance-based physical function, a 6-meter gait speed (6MGS) test was measured to evaluate their mobility, and a 5-time Sit-to-Stand test (5STS) was assessed to evaluate their balance. Pain intensity, knee extensor and flexor muscle strength, age, body mass index (BMI), durations of symptoms, and radiographic severity were also collected. Spearman correlation and stepwise multiple linear regression were used to explore the association and predictors in self-reported and performance-based physical function. Results: BMI and durations of symptoms did not indicate any significant correlation with either self-reported or performance-based physical function. Age is significantly negatively associated with 6MGS (r 2 = -0.383, p < 0.01), while knee extensor muscle strength has a moderate correlation with 5STS (r 2 = -0.528, p < 0.01). In the stepwise multiple linear regression models, pain intensity (ß = 0.712, p < 0.001), knee flexor muscle strength (ß = 0.112, p = 0.042) were significantly associated with self-reported physical function in daily activities and contributed to 55.0% of the variance in KOOS-PF score. Knee muscle strength, including knee extensor (5STS: ß = -0.428, p < 0.001) and flexor muscle strength (6MGS: ß = 0.367, p < 0.001), were the main predictors with performance-based physical function. Conclusion: Pain intensity was the leading risk factor of self-reported physical function, and knee flexor muscle strength contributed as well. The severity of knee OA, durations of symptoms and BMI did not contribute to physical function. However, knee extensor and flexor muscle strength were the main predictors of performance-based performance. Our results show that strengthening of weak knee muscles in both quadriceps and hamstring muscle strength should be considered a priory consideration in knee OA no matter if people are in the early or end-stage of knee OA.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38976363

RESUMEN

OBJECTIVES: This proof-of-concept, open-label phase 1b study evaluated the safety and efficacy of cilofexor, a potent selective farnesoid X receptor agonist, in patients with compensated cirrhosis due to primary sclerosing cholangitis (PSC). METHODS: Escalating doses of cilofexor (30 mg [weeks 1-4], 60 mg [weeks 5-8], 100 mg [weeks 9-12]) were administered orally once daily over 12 weeks. The primary endpoint was safety. Exploratory measures included cholestasis and fibrosis markers, and pharmacodynamic biomarkers of bile acid homeostasis. RESULTS: Eleven patients were enrolled (median age: 48 years; 55% men). The most common treatment-emergent adverse events (TEAEs) were pruritus (8/11 [72.7%]), fatigue, headache, nausea, and upper respiratory tract infection (2/11 [18.2%] each). Seven patients experienced a pruritus TEAE (one grade 3) considered drug related. One patient temporarily discontinued cilofexor owing to peripheral edema. There were no deaths, serious TEAEs, or TEAEs leading to permanent discontinuation. Median changes (interquartile ranges) from baseline to week 12 (predose, fasting) were -24.8% (-35.7, -7.4) for alanine transaminase, -13.0% (-21.9, -8.6) for alkaline phosphatase, -43.5% (-52.1, -30.8) for gamma-glutamyl transferase, -12.7% (-25.0, 0.0) for total bilirubin, and -21.2% (-40.0, 0.0) for direct bilirubin. Least-squares mean percentage change (95% confidence interval) from baseline to week 12 at trough was -55.3% (-70.8, -31.6) for C4 and -60.5% (-81.8, -14.2) for cholic acid. Fasting fibroblast growth factor 19 levels transiently increased after cilofexor administration. CONCLUSIONS: Escalating doses of cilofexor over 12 weeks were well tolerated and improved cholestasis markers in patients with compensated cirrhosis due to PSC (NCT04060147).

3.
Hepatol Commun ; 8(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38967589

RESUMEN

BACKGROUND: Novel noninvasive predictors of disease severity and prognosis in primary sclerosing cholangitis (PSC) are needed. This study evaluated the ability of extracellular matrix remodeling markers to diagnose fibrosis stage and predict PSC-related fibrosis progression and clinical events. METHODS: Liver histology and serum markers of collagen formation (propeptide of type III collagen [Pro-C3], propeptide of type IV collagen, propeptide of type V collagen), collagen degradation (type III collagen matrix metalloproteinase degradation product and type IV collagen matrix metalloproteinase degradation product), and fibrosis (enhanced liver fibrosis [ELF] score and its components [metalloproteinase-1, type III procollagen, hyaluronic acid]) were assessed in samples from baseline to week 96 in patients with PSC enrolled in a study evaluating simtuzumab (NCT01672853). Diagnostic performance for advanced fibrosis (Ishak stages 3-6) and cirrhosis (Ishak stages 5-6) was evaluated by logistic regression and AUROC. Prognostic performance for PSC-related clinical events and fibrosis progression was assessed by AUROC and Wilcoxon rank-sum test. RESULTS: Among 234 patients, 51% had advanced fibrosis and 11% had cirrhosis at baseline. Baseline Pro-C3 and ELF score and its components provided moderate diagnostic ability for discrimination of advanced fibrosis (AUROC 0.73-0.78) and cirrhosis (AUROC 0.73-0.81). Baseline Pro-C3, ELF score, and type III procollagen provided a moderate prognosis for PSC-related clinical events (AUROC 0.70-0.71). Among patients without cirrhosis at baseline, median changes in Pro-C3 and ELF score to week 96 were higher in those with than without progression to cirrhosis (both p < 0.001). CONCLUSIONS: Pro-C3 correlated with fibrosis stage, and Pro-C3 and ELF score provided discrimination of advanced fibrosis and cirrhosis and predicted PSC-related events and fibrosis progression. The results support the clinical utility of Pro-C3 and ELF score for staging and as prognostic markers in PSC.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Biomarcadores , Colangitis Esclerosante , Progresión de la Enfermedad , Matriz Extracelular , Cirrosis Hepática , Humanos , Colangitis Esclerosante/tratamiento farmacológico , Colangitis Esclerosante/sangre , Colangitis Esclerosante/patología , Masculino , Femenino , Biomarcadores/sangre , Pronóstico , Adulto , Cirrosis Hepática/sangre , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/etiología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Persona de Mediana Edad , Matriz Extracelular/patología , Índice de Severidad de la Enfermedad , Ácido Hialurónico/sangre , Hígado/patología
4.
Front Cell Dev Biol ; 12: 1416472, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933335

RESUMEN

Even with sufficient oxygen, tumor cells use glycolysis to obtain the energy and macromolecules they require to multiply, once thought to be a characteristic of tumor cells known as the "Warburg effect". In fact, throughout the process of carcinogenesis, immune cells and stromal cells, two major cellular constituents of the tumor microenvironment (TME), also undergo thorough metabolic reprogramming, which is typified by increased glycolysis. In this review, we provide a full-scale review of the glycolytic remodeling of several types of TME cells and show how these TME cells behave in the acidic milieu created by glucose shortage and lactate accumulation as a result of increased tumor glycolysis. Notably, we provide an overview of putative targets and inhibitors of glycolysis along with the viability of using glycolysis inhibitors in combination with immunotherapy and chemotherapy. Understanding the glycolytic situations in diverse cells within the tumor immunological milieu will aid in the creation of subsequent treatment plans.

5.
Front Pharmacol ; 15: 1343755, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720776

RESUMEN

Purpose: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its related mortality is increasing at an unprecedented rate. Traditional Chinese medicine (TCM) has been shown to offer potential for early prevention and treatment of NAFLD. The new mechanism of "Shenling Baizhu San" (SLBZS) is examined in this study for the prevention and treatment of NAFLD at the preclinical level. Methods: Male C57BL/6J mice were randomly divided into three groups: normal diet (ND), western diet + CCl4 injection (WDC), and SLBZS intervention (WDC + SLBZS). Body weights, energy intake, liver enzymes, pro-inflammatory factors, and steatosis were recorded in detail. Meanwhile, TPH1, 5-HT, HTR2A, and HTR2B were tested using qRT-PCR or ELISA. Dynamic changes in the gut microbiota and metabolites were further detected through the 16S rRNA gene and untargeted metabolomics. Results: SLBZS intervention for 6 weeks could reduce the serum and liver lipid profiles, glucose, and pro-inflammatory factors while improving insulin resistance and liver function indexes in the mice, thus alleviating NAFLD in mice. More importantly, significant changes were found in the intestinal TPH-1, 5-HT, liver 5-HT, and related receptors HTR2A and HTR2B. The 16S rRNA gene analysis suggested that SLBZS was able to modulate the disturbance of gut microbiota, remarkably increasing the relative abundance of probiotics (Bifidobacterium and Parvibacter) and inhibiting the growth of pro-inflammatory bacteria (Erysipelatoclostridium and Lachnoclostridium) in mice with NAFLD. Combined with metabolomics in positive- and negative-ion-mode analyses, approximately 50 common differential metabolites were selected via non-targeted metabolomics detection, which indicated that the targeting effect of SLBZS included lipid metabolites, bile acids (BAs), amino acids (AAs), and tryptophan metabolites. In particular, the lipid metabolites 15-OxEDE, vitamin D3, desoxycortone, and oleoyl ethanol amide were restored by SLBZS. Conclusion: Integrating the above results of multiple omics suggests that SLBZS ameliorates NAFLD via specific gut microbiota, gut-derived 5-HT, and related metabolites to decrease fat accumulation in the liver and inflammatory responses.

6.
Theor Appl Genet ; 137(6): 132, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750241

RESUMEN

KEY MESSAGE: The Dof22 gene encoding a deoxyribonucleic acid binding with one finger in maize, which is associated with its drought tolerance. The identification of drought stress regulatory genes is essential for the genetic improvement of maize yield. Deoxyribonucleic acid binding with one finger (Dof), a plant-specific transcription factor family, is involved in signal transduction, morphogenesis, and environmental stress responses. In present study, by weighted correlation network analysis (WGCNA) and gene co-expression network analysis, 15 putative Dof genes were identified from maize that respond to drought and rewatering. A real-time fluorescence quantitative PCR showed that these 15 genes were strongly induced by drought and ABA treatment, and among them ZmDof22 was highly induced by drought and ABA treatment. Its expression level increased by nearly 200 times after drought stress and more than 50 times after ABA treatment. After the normal conditions were restored, the expression levels were nearly 100 times and 40 times of those before treatment, respectively. The Gal4-LexA/UAS system and transcriptional activation analysis indicate that ZmDof22 is a transcriptional activator regulating drought tolerance and recovery ability in maize. Further, overexpressed transgenic and mutant plants of ZmDof22 by CRISPR/Cas9, indicates that the ZmDof22, improves maize drought tolerance by promoting stomatal closure, reduces water loss, and enhances antioxidant enzyme activity by participating in the ABA pathways. Taken together, our findings laid a foundation for further functional studies of the ZmDof gene family and provided insights into the role of the ZmDof22 regulatory network in controlling drought tolerance and recovery ability of maize.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estomas de Plantas , Factores de Transcripción , Zea mays , Zea mays/genética , Zea mays/fisiología , Zea mays/enzimología , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Antioxidantes/metabolismo , Plantas Modificadas Genéticamente/genética , Ácido Abscísico/metabolismo , Resistencia a la Sequía
7.
Trials ; 25(1): 251, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605374

RESUMEN

BACKGROUND: The goal of anterior cruciate ligament reconstruction (ACLR) is to restore the preinjury level of knee function to return to play (RTP). However, even after completing the rehabilitation programme, some patients may have persistent quadriceps muscle weakness affecting knee function which ultimately leads to a failure in returning to play. Vitamin D has been long recognized for its musculoskeletal effects. Vitamin D deficiency may impair muscle strength recovery after ACLR. Correcting vitamin D levels may improve muscle strength. METHODS: This is a double-blinded, randomized controlled trial to investigate the effects of vitamin D supplementation during the post-operative period on quadriceps muscle strength in anterior cruciate ligament (ACL)-injured patients. Patients aged 18-50 with serum vitamin D < 20 ng/ml, unilateral ACL injury, > 90% deficit in total quadriceps muscle volume on the involved leg compared with uninvolved leg, Tegner score 7 + , and no previous knee injury/surgery will be recruited. To assess patient improvement, we will perform isokinetic and isometric muscle assessments, ultrasound imaging for quadriceps thickness, self-reported outcomes, KT-1000 for knee laxity, biomechanical analysis, and Xtreme CT for bone mineral density. To investigate the effect of vitamin D status on quadriceps strength, blood serum samples will be taken before and after intervention. DISCUSSION: Patients with low vitamin D levels had greater quadriceps fibre cross-sectional area loss and impaired muscle strength recovery after ACL. The proposed study will provide scientific support for using vitamin D supplementation to improve quadriceps strength recovery after ACLR. TRIAL REGISTRATION: ClinicalTrials.gov NCT05174611. Registered on 28 November 2021.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior , Músculo Cuádriceps , Humanos , Reconstrucción del Ligamento Cruzado Anterior/efectos adversos , Reconstrucción del Ligamento Cruzado Anterior/métodos , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Fuerza Muscular , Ensayos Clínicos Controlados Aleatorios como Asunto , Vitamina D , Vitaminas , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad
8.
Biomed Mater Eng ; 35(3): 279-292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38461500

RESUMEN

BACKGROUND:  Glioblastoma is the most aggressive brain tumor with poor prognosis. Although Resveratrol (Rsv) is known to have therapeutic effects on glioma, the effects of gold-conjugated resveratrol nanoparticles (Rsv-AuNPs) on glioma cells are rarely reported. OBJECTIVE: We aimed to investigate the effects of Rsv-AuNPs on glioma cells and its underlying mechanism. METHOD: Human glioma cell line U87 was treated with different concentrations of Rsv-AuNPs. CCK-8, transwell, and wound healing assay were performed to measure the effects of Rsv-AuNPs on cell proliferation, invasion, and migration ability, respectively. Flow cytometry assay was used to detect the effects of Rsv-AuNPs on apoptosis. Changes of protein expressions related to proliferation, invasion, migration, and apoptosis were measured by Western blot assay. In addition, the inhibitory role of Rsv-AuNPs in the PI3K/AKT/mTOR signaling pathway was verified by using PI3K inhibitor LY294002. RESULTS: Rsv-AuNPs treatment significantly suppressed proliferation, migration, and invasion of U87 cells (all P < 0.05) and increased the apoptosis rate (P < 0.05). The changes of proteins related to proliferation, migration, invasion and apoptosis were consistent (all P < 0.05). Moreover, Rsv-AuNPs treatment significantly inhibited the phosphorylation of PI3K, AKT and mTOR proteins in U87 cells (P < 0.05). CONCLUSION: The present study found that Rsv-AuNPs inhibited the proliferation, migration, and invasion of U87 cells and induced apoptosis by inhibiting the activation of PI3K/AKT/mTOR signaling pathway. In the future, Rsv-AuNPs might be applied to the clinical treatment of glioma through more in-depth animal and clinical research.


Asunto(s)
Apoptosis , Movimiento Celular , Proliferación Celular , Glioma , Oro , Nanopartículas del Metal , Resveratrol , Resveratrol/farmacología , Resveratrol/química , Humanos , Oro/química , Oro/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo
9.
J Interferon Cytokine Res ; 44(3): 99-110, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488758

RESUMEN

Despite the promising results of immunotherapy, further experiments need to be considered because of several factors ranging from physical barriers to off-tumor adverse effects. It is surprising that adoptive cellular immunotherapy, particularly dendritic cell and cytokine-induced killer (DC-CIK) therapy, is far less emphasized in the treatment of cancer diseases. DC-CIK therapy in cancer patients presents auspicious results with low or no side effects, which should not be overlooked. More interestingly, almost all DC-CIK clinical trials are ongoing in China that highlight the limitations of therapeutic strategies and require large-scale research. To date, it is advisable to consider combination therapy with chemotherapy since it has shown promising outcomes with higher efficacy. In this article, the efficacy of DC-CIK therapy in patients with cancer is summarized by underscoring the lack of experiments on soft cancers on an unprecedented scale. In brief, DC-CIK therapy is a safe and effective therapeutic agent for malignant and nonmalignant diseases that enhances short-term and long-term effects.


Asunto(s)
Células Asesinas Inducidas por Citocinas , Neoplasias , Humanos , Citocinas/uso terapéutico , Neoplasias/terapia , Inmunoterapia , Inmunoterapia Adoptiva/efectos adversos , Células Dendríticas
10.
Clin Exp Otorhinolaryngol ; 17(2): 122-136, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38360523

RESUMEN

OBJECTIVES: The annual prevalence of chronic rhinosinusitis (CRS) is increasing, and the lack of effective treatments imposes a substantial burden on both patients and society. The formation of nasal polyps in patients with CRS is closely related to tissue remodeling, which is largely driven by the epithelial-mesenchymal transition (EMT). MicroRNA (miRNA) plays a pivotal role in the pathogenesis of numerous diseases through the miRNA-mRNA regulatory network; however, the specific mechanism of the miRNAs involved in the formation of nasal polyps remains unclear. METHODS: The expression of EMT markers and Smad3 were detected using western blots, quantitative real-time polymerase chain reaction, and immunohistochemical and immunofluorescence staining. Differentially expressed genes in nasal polyps and normal tissues were screened through the Gene Expression Omnibus database. To predict the target genes of miR-145-5p, three different miRNA target prediction databases were used. The migratory ability of cells was evaluated using cell migration assay and wound healing assays. RESULTS: miR-145-5p was associated with the EMT process and was significantly downregulated in nasal polyp tissues. In vitro experiments revealed that the downregulation of miR-145-5p promoted EMT. Conversely, increasing miR-145-5p levels reversed the EMT induced by transforming growth factor-ß1. Bioinformatics analysis suggested that miR-145-5p targets Smad3. Subsequent experiments confirmed that miR-145-5p inhibits Smad3 expression. CONCLUSION: Overall, miR-145-5p is a promising target to inhibit nasal polyp formation, and the findings of this study provide a theoretical basis for nanoparticle-mediated miR-145-5p delivery for the treatment of nasal polyps.

11.
Plants (Basel) ; 13(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38337873

RESUMEN

The protein phosphatase PP2C plays an important role in plant responses to stress. Therefore, the identification of maize PP2C genes that respond to drought stress is particularly important for the improvement and creation of new drought-resistant assortments of maize. In this study, we identified 102 ZmPP2C genes in maize at the genome-wide level. We analyzed the physicochemical properties of 102 ZmPP2Cs and constructed a phylogenetic tree with Arabidopsis. By analyzing the gene structure, conserved protein motifs, and synteny, the ZmPP2Cs were found to be strongly conserved during evolution. Sixteen core genes involved in drought stress and rewatering were screened using gene co-expression network mapping and expression profiling. The qRT-PCR results showed 16 genes were induced by abscisic acid (ABA), drought, and NaCl treatments. Notably, ZmPP2C15 exhibited a substantial expression difference. Through genetic transformation, we overexpressed ZmPP2C15 and generated the CRISPR/Cas9 knockout maize mutant zmpp2c15. Overexpressing ZmPP2C15 in Arabidopsis under drought stress enhanced growth and survival compared with WT plants. The leaves exhibited heightened superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) activities, elevated proline (Pro) content, and reduced malondialdehyde (MDA) content. Conversely, zmpp2c15 mutant plants displayed severe leaf dryness, curling, and wilting under drought stress. Their leaf activities of SOD, POD, APX, and CAT were lower than those in B104, while MDA was higher. This suggests that ZmPP2C15 positively regulates drought tolerance in maize by affecting the antioxidant enzyme activity and osmoregulatory substance content. Subcellular localization revealed that ZmPP2C15 was localized in the nucleus and cytoplasm. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments demonstrated ZmPP2C15's interaction with ZmWIN1, ZmADT2, ZmsodC, Zmcab, and ZmLHC2. These findings establish a foundation for understanding maize PP2C gene functions, offering genetic resources and insights for molecular design breeding for drought tolerance.

12.
Am J Cancer Res ; 13(11): 5405-5417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38058827

RESUMEN

Pancreatic cancer is a malignancy with extremely poor prognosis. This study aimed to investigate the application value of tumour markers and matrix metalloproteinase-1 (MMP-1) in predicting clinical staging and lymph node metastasis of pancreatic cancer. Totally, 130 pancreatic cancer patients and 40 healthy controls admitted to Haian Hospital Affiliated to Nantong University from January 2018 to January 2022 were collected. The expression of MMP-1, carcinoembryonic antigen (CEA), carbohydrate antigen 199 (CA199), and carbohydrate antigen 125 (CA125) were detected in their serum. MMP-1 was highly expressed in pancreatic cancer tissue, and MMP-1, CA199, CA125, and CEA could serve as diagnostic markers for pancreatic cancer. MMP-1 and CA199 had higher diagnostic value for early pancreatic cancer. Additionally, MMP-1 also demonstrated high predictive value for lymph node metastasis. Multivariate Cox regression analysis identified TNM staging, differentiation, MMP-1, and CA199 as independent risk factors affecting the overall survival of pancreatic cancer patients. The risk score model constructed based on Cox regression coefficients could better predict the prognosis of pancreatic cancer patients. MMP-1 demonstrates promising application value in determining clinical staging and lymph node metastasis of pancreatic cancer.

13.
Genes (Basel) ; 14(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38002948

RESUMEN

The FKBP (FK506-binding protein) gene family is an important member of the PPlase protease family and plays a vital role during the processes of plant growth and development. However, no studies of the FKBP gene family have been reported in cucumber. In this study, 19 FKBP genes were identified in cucumber, which were located on chromosomes 1, 3, 4, 6, and 7. Phylogenetic analysis divided the cucumber FKBP genes into three subgroups. The FKBP genes in the same subgroup exhibited similar structures and conserved motifs. The cis-acting elements analysis revealed that the promoters of cucumber FKBP genes contained hormone-, stress-, and development-related cis-acting elements. Synteny analysis of the FKBP genes among cucumber, Arabidopsis, and rice showed that 12 kinds of syntenic relationships were detected between cucumber and Arabidopsis FKBP genes, and 3 kinds of syntenic relationships were observed between cucumber and rice FKBP genes. The tissue-specific expression analysis showed that some FKBP genes were expressed in all tissues, while others were only highly expressed in part of the 10 types of tissues. The expression profile analysis of cucumber FKBP genes under 13 types of stresses showed that the CsaV3_1G007080 gene was differentially expressed under abiotic stresses (high temperature, NaCl, silicon, and photoperiod) and biotic stresses (downy mildew, green mottle mosaic virus, Fusarium wilt, phytophthora capsica, angular leaf spot, and root-knot nematode), which indicated that the CsaV3_1G007080 gene plays an important role in the growth and development of cucumber. The interaction protein analysis showed that most of the proteins in the FKBP gene family interacted with each other. The results of this study will lay the foundation for further research on the molecular biological functions of the cucumber FKBP gene family.


Asunto(s)
Arabidopsis , Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Genoma de Planta/genética , Proteínas de Unión a Tacrolimus/genética , Filogenia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
14.
Aging Dis ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37815897

RESUMEN

Maintenance of mitochondrial homeostasis is crucial for ensuring healthy mitochondria and normal cellular function. This process is primarily responsible for regulating processes that include mitochondrial OXPHOS, which generates ATP, as well as mitochondrial oxidative stress, apoptosis, calcium homeostasis, and mitophagy. Bone mesenchymal stem cells express factors that aid in bone formation and vascular growth. Positive regulation of hematopoietic stem cells in the bone marrow affects the differentiation of osteoclasts. Furthermore, the metabolic regulation of cells that play fundamental roles in various regions of the bone, as well as interactions within the bone microenvironment, actively participates in regulating bone integrity and aging. The maintenance of cellular homeostasis is dependent on the regulation of intracellular organelles, thus understanding the impact of mitochondrial functional changes on overall bone metabolism is crucially important. Recent studies have revealed that mitochondrial homeostasis can lead to morphological and functional abnormalities in senescent cells, particularly in the context of bone diseases. Mitochondrial dysfunction in skeletal diseases results in abnormal metabolism of bone-associated cells and a secondary dysregulated microenvironment within bone tissue. This imbalance in the oxidative system and immune disruption in the bone microenvironment ultimately leads to bone dysplasia. In this review, we examine the latest developments in mitochondrial respiratory chain regulation and its impacts on maintenance of bone health. Specifically, we explored whether enhancing mitochondrial function can reduce the occurrence of bone cell deterioration and improve bone metabolism. These findings offer prospects for developing bone remodeling biology strategies to treat age-related degenerative diseases.

15.
World J Surg Oncol ; 21(1): 324, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833694

RESUMEN

BACKGROUND: The growth arrest and DNA damage-inducible gene gamma (GADD45G), an important member of GADD45 family, has been connected to the development of certain human cancers. Our previous studies have confirmed that GADD45G expression could be upregulated by 4-methoxydalbergione (4MOD) in liver cancer cells, but its potential pathological role in hepatocellular carcinoma (HCC) has not been fully understood. This study aimed to determine potential role of GADD45G in HCC, and the effects of 4-methoxydalbergione (4MOD) on the regulation of GADD45G expression in vivo were also analyzed. METHODS: Publicly available data and in-house immunohistochemistry (IHC) experiments were utilized to explore the expression profiles and clinical significance of GADD45G in HCC samples. Functional enrichment analysis based on GADD45G co-expression genes was used to excavate the molecular mechanism of GADD45G in HCC. We also conducted in vivo experiment on BALB/c nude mice to excavate the inhibitory effect of 4MOD on HCC and to evaluate the differences in the expression of GADD45G in xenograft tissues between the 4MOD-treated and untreated groups. RESULTS: GADD45G displayed significant low expression in HCC tissues. Downregulated expression of GADD45G was positively correlated with some high risk factors in HCC patients and predicted worse prognosis of HCC patients. There was a close association of GADD45G mRNA expression and immune cells, including neutrophils, NK cells, CD8 T cells, and macrophages. Co-expressed genes of GADD45G were involved in several pathways including cell cycle, carbon metabolism, and peroxisome. 4MOD could significantly suppress the growth of HCC in vivo, and this inhibitory effect was dependent on the upregulation of GADD45G expression. CONCLUSION: GADD45G expression can be used as a new clinical biomarker for HCC and GADD45G may be a potential target for the anti-cancer effect of 4MOD in liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Ratones Desnudos , Benzoquinonas , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética
16.
ACS Nano ; 17(18): 18318-18331, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37690074

RESUMEN

Malignant melanoma, as a highly aggressive skin cancer, is strongly associated with mutations in serine/threonine protein kinase B-RAF (BRAF, where RAF stands for rapidly accelerated fibrosarcoma). Targeted therapy with anti-BRAF small interfering RNA (siBRAF) represents a crucial aspect of metastatic melanoma treatment. In this study, an injectable hydrogel platform based on sodium alginate (SA), with multifunctions of photothermal and Ca2+-overload cell apoptosis, was explored as a siBRAF carrier for metastatic melanoma therapy. We employed polydopamine nanoparticles (PDAs) as a photothermal core and constructed a calcium phosphate (CaP) shell via biomineralization (PDA@CaP) to load siBRAF (PDA@siBRAF/CaP). The pH-sensitive CaP shell facilitated the release of Ca2+ under the weakly acidic tumor microenvironment, triggering the gelation of PDA@siBRAF/CaP-SA to localized release siBRAF at tumor sites with the interruption of the RAS-RAF-MEK-ERK (MAPK) pathway. Besides, the continuous release of Ca2+ could also lead to Ca2+-overload cell apoptosis. Moreover, the photothermal effect of PDA regulated the release kinetics, resulting in coordinated therapeutic abilities of individual components in the PDA@siBRAF/CaP-SA hydrogels. Consequently, the effective inhibition of tumor growth and metastasis was achieved in vitro and in vivo using a highly metastatic melanoma cell line B16F10 as the model, by combining photothermal ablation, Ca2+ overload, and BRAF silencing. Our work provides a proof-of-concept for an injectable hydrogel system that simultaneously targets multiple mechanisms involved in melanoma progression and has the potential to be translated into clinical use for the metastatic melanoma therapy.


Asunto(s)
Fibrosarcoma , Melanoma , Humanos , ARN Interferente Pequeño/genética , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas c-akt , Melanoma/tratamiento farmacológico , Proteínas Serina-Treonina Quinasas , Anticuerpos , Alginatos , Treonina , Microambiente Tumoral
17.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G356-G367, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37529842

RESUMEN

Chronic visceral pain is a common symptom of irritable bowel syndrome (IBS). Exosomes are involved in the development of pain. Rab27a can mediate the release of exosomes. The purpose of this study is to investigate how Rab27a-mediated exosome secretion in the anterior cingulate cortex (ACC) regulates visceral hyperalgesia induced with neonatal maternal deprivation (NMD) in adult mice. The colorectal distension method was adopted to measure visceral pain. The BCA protein assay kit was applied to detect the exosome protein concentration. Western blotting, quantitative PCR, and immunofluorescence technique were adopted to detect the expression of Rab27a and the markers of exosomes. Exosomes extracted from ACC were more in NMD mice than in control (CON) mice. Injection of the exosome-specific inhibitor GW4869 in ACC attenuated colorectal visceral pain of NMD mice. Injection of NMD-derived exosomes produced colorectal visceral pain in CON mice. Rab27a was upregulated in ACC of NMD mice. Rab27a was highly expressed in ACC neurons of NMD mice, rather than astrocytes and microglia. Injection of Rab27a-siRNA reduced the release of exosomes and attenuated the colorectal visceral pain in NMD mice. This study suggested that overexpression of Rab27a increased exosome secretion in ACC neurons, thus contributing to visceral hyperalgesia in NMD mice.NEW & NOTEWORTHY This work demonstrated that the expression of Rab27a in the anterior cingulate cortex was upregulated, which mediated multivesicular bodies trafficking to the plasma membrane and led to the increased release of neuronal exosomes, thus contributing to colorectal visceral pain in neonatal maternal deprivation (NMD) mice. Blocking the release of exosomes or downregulation of Rab27a could alleviate colorectal visceral pain in NMD mice. These data may provide a promising strategy for the treatment of visceral pain in irritable bowel syndrome patients.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Síndrome del Colon Irritable , Dolor Visceral , Ratones , Animales , Giro del Cíngulo , Dolor Visceral/metabolismo , Hiperalgesia/etiología , Privación Materna , Exosomas/metabolismo , Proteínas rab27 de Unión a GTP/genética , Proteínas rab27 de Unión a GTP/metabolismo
18.
Pak J Pharm Sci ; 36(2): 379-385, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37530144

RESUMEN

Lycorine, a benzylphenanthridine-type alkaloid extracted form Amarillidaceae genera, exhibits an efficacy against various types of cancer. Nonetheless, the impact of lycorine treatment on neuroblastoma has not yet been investigated. Here we utilized a combinatorial strategy to explore and to understand the effect of lycorine on neuroblastoma Neuro-2a cells. Our results indicated that lycorine inhibits the Neuro-2a cells proliferation by promoting cell apoptosis. In addition, wound healing assay revealed that lycorine inhibits the Neuo-2a cells migration. Comparative transcriptome analysis showed that lycorine has the potential to affect cycle pathway. Flow cytometry analysis confirmed that lycorine arrested the Neuro-2a cell cycle at G2/M phase. Furthermore, we detected that the protein expression of Cyclin A, Cyclin B1 and Cyclin E were decreased, whereas protein of p53, Tgfß3, Gadd45ß, Gadd45γ, p21 and p27 were increased after treatment with lycorine. Collectively, we propose that lycorine might be a valuable candidate therapeutic agent in combating neuroblastoma.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Neuroblastoma , Humanos , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Ciclo Celular , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo
19.
Plant Physiol Biochem ; 202: 107941, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37549573

RESUMEN

Rhizosphere-enriched microbes induced by foliar phytopathogen infection can be assembled into a functional community to enhance plant defense mechanisms. However, the functions of stably-colonizing rhizosphere microbiota are rarely investigated. In this study, Botrytis cinerea infection changed rhizosphere bacterial communities in tomato plants. The phytopathogen-infected plants recruited specific rhizosphere bacterial taxa, while several bacterial taxa stably colonized the rhizosphere, regardless of phytopathogen infection. Through the analysis of the rhizosphere bacterial community, we established a synthetic community harboring 8 phytopathogen-inducible and 30 stably-colonizing bacteria species. Furthermore, the 38-species community was simplified into a three-species community, consisting of one phytopathogen-inducible (Asticcacaulis sp.) and two stably-colonizing species (Arachidicoccus sp. And Phenylobacterium sp.). The simplified community provided a durable protection for the host plants by synergistic effects, with the phytopathogen-inducible species triggering plant defense responses and the stably-colonizing species promoting biofilm formation. The simplified community exhibited similar protective effects as the 38-species community. Moreover, the activation of oxylipin pathways in the phytopathogen-infected leaves was significantly intensified by the simplified community. However, the inhibited biosynthesis of antimicrobial divinyl ethers, including colneleic and colnelenic acid, fully abolished the community-induced plant disease resistance. In contrast, transgenic plants overexpressing SlLOX5 and SlDES1, with higher levels of divinyl ethers, displayed stronger resistance against B. cinerea compared to wild-type plants. Collectively, these findings provided insights into the utilization of the simplified community for preventing gray mold disease.


Asunto(s)
Oxilipinas , Rizosfera , Bacterias , Plantas Modificadas Genéticamente , Microbiología del Suelo , Raíces de Plantas/microbiología
20.
Front Plant Sci ; 14: 1159955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37265635

RESUMEN

Nuclear factor Y (NF-Y) genes play important roles in many biological processes, such as leaf growth, nitrogen nutrition, and drought resistance. However, the biological functions of these transcription factor family members have not been systematically analyzed in maize. In the present study, a total of 52 ZmNF-Y genes were identified and classified into three groups in the maize genome. An analysis of the evolutionary relationship, gene structure, and conserved motifs of these genes supports the evolutionary conservation of NF-Y family genes in maize. The tissue expression profiles based on RNA-seq data showed that all genes apart from ZmNF-Y16, ZmNF-YC15, and ZmNF-YC17 were expressed in different maize tissues. A weighted correlation network analysis was conducted and a gene co expression network method was used to analyze the transcriptome sequencing results; six core genes responding to drought and rewatering were identified. A real time fluorescence quantitative analysis showed that these six genes responded to high temperature, drought, high salt, and abscisic acid (ABA) treatments, and subsequent restoration to normal levels. ZmNF-YC12 was highly induced by drought and rewatering treatments. The ZmNF-YC12 protein was localized in the nucleus, and the Gal4-LexA/UAS system and a transactivation analysis demonstrated that ZmNF-YC12 in maize (Zea mays L.) is a transcriptional activator that regulates drought resistance and recovery ability. Silencing ZmNF-YC12 reduced net photosynthesis, chlorophyll content, antioxidant (superoxide dismutase, catalase, peroxidase and ascorbate peroxidase) system activation, and soluble protein and proline contents; it increased the malondialdehyde content, the relative water content, and the water loss rate, which weakened drought resistance and the recoverability of maize. These results provide insights into understanding the evolution of ZmNF-Y family genes in maize and their potential roles in genetic improvement. Our work provides a foundation for subsequent functional studies of the NF-Y gene family and provides deep insights into the role of the ZmNF-YC12 regulatory network in controlling drought resistance and the recoverability of maize.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...