RESUMEN
Ferroptosis has been recognized as a promising therapeutic strategy for cancer due to its unique mechanism of action. However, the upregulation of stearoyl-CoA desaturase 1 (SCD1) in ovarian cancer leads to resistance to ferroptotic therapy. Zinc ion (Zn2+) serves as the cofactor of SCD1. It was hypothesized that selective deprivation of Zn2+ from SCD1 could sensitize ferroptotic ovarian cancer therapy. Here, we report a hypoxia-responsive polymer micelle for enhanced ferroptosis of ovarian cancer cells. A SCD1 inhibitor, PluriSIn 1 (Plu), and a ferroptosis inducer, Auranofin (Aur), were co-encapsulated in nitroimidazole-bearing micelles. Under the hypoxic tumor microenvironment, the conversion of nitroimidazole to aminoimidazole triggered the cargo release and induced the depletion of antioxidant molecules (e.g., glutathione, thioredoxin, and NADPH). Meanwhile, because of the strong coordination between aminoimidazole and Zn2+ compared to that of histidine and Zn2+, such conversion can deprive the metal cofactor of SCD1, hence sensitizing the action of Plu and Aur. The proof-of-concept was demonstrated in cell and animal models with minimal systemic toxicity. The current work integrates ferroptosis induction with SCD1 inhibition in a hypoxia-responsive vehicle, offering a promising strategy for addressing the ferroptosis resistance and opening novel avenues for managing the difficult-to-treat ovarian cancer.
RESUMEN
We report the first search for the elastic scatterings between cosmic-ray boosted sub-MeV dark matter (DM) and electrons in the PandaX-4T liquid xenon experiment. Sub-MeV DM particles can be accelerated by scattering with electrons in the cosmic rays and produce detectable electron recoil signals in the detector. Using the commissioning data from PandaX-4T of 0.63 tonne·year exposure, we set new constraints on DM-electron scattering cross sections for DM masses ranging from 10 eV/c^{2} to 3 keV/c^{2}.
RESUMEN
OBJECTIVE: To evaluate the application of a rehabilitation management protocol for urinary incontinence after robot-assisted laparoscopic prostatectomy (RALP). METHODS: We conducted a retrospective cohort study of 114 patients who underwent RALP between August 2021 and November 2021 as the control group and a prospective analysis of 114 patients who underwent RALP between May 2022 and August 2022 as the experimental group. The rehabilitation management protocol focused on preoperative stage, postoperative care, day of catheter removal, 1 month postoperative, 3 months postoperative, 6 months postoperative, and 12 months or more postoperative. RESULTS: The 24-h pad test was significantly lower in the experimental group compared with the control group at 2 and 6 months after RALP (both P < 0.01). The scores of the international consultation on incontinence questionnaire-short form (ICIQ-SF) in the experimental group were significantly lower than those in the control group at 1 month after RALP (P < 0.01).The scores of quality of life in the experimental group were significantly higher than those of the control group at 1, 2, and 6 months after RALP (all P < 0.01).The scores of Broome Pelvic Muscle Self-efficacy Scale (BPMSES) were lower than those of the control group at 1, 2, 3, and 6 months after RALP (all P < 0.01). CONCLUSION: The application of the rehabilitation management protocol had significant beneficial effects on urinary functions and quality of life in patients with prostate cancer after RALP.
Asunto(s)
Laparoscopía , Prostatectomía , Neoplasias de la Próstata , Calidad de Vida , Procedimientos Quirúrgicos Robotizados , Incontinencia Urinaria , Humanos , Masculino , Prostatectomía/efectos adversos , Prostatectomía/métodos , Prostatectomía/rehabilitación , Incontinencia Urinaria/etiología , Incontinencia Urinaria/rehabilitación , Persona de Mediana Edad , Estudios Retrospectivos , Procedimientos Quirúrgicos Robotizados/métodos , Procedimientos Quirúrgicos Robotizados/efectos adversos , Laparoscopía/métodos , Laparoscopía/efectos adversos , Anciano , Estudios Prospectivos , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/rehabilitación , Encuestas y Cuestionarios , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/rehabilitación , Resultado del TratamientoRESUMEN
Biomarkers have been applied for toxicity assessment of biomaterials due to their advantages. However, research on biomarkers for biomaterials is still in its early stages. There is a lack of integrated analysis in biomarker research based on multiomics studies. Herein, we report a new approach for combining of gene/protein and metabolite multiomics to reveal biomarkers of nickel ion (Ni2+) cytotoxicity and the underlying mechanism. Firstly, differentially expressed genes and proteins were compared to screen gene/protein pairs exhibiting consistent differential expression within the same Ni2+-treated groups. Next, metabolic pathway analysis was carried out to reveal pathways in which gene/protein pairs and metabolites showed upstream and downstream relationships. Important networks composed of gene/protein pairs, metabolites and metabolic pathways and candidate biomarkers were subsequently identified. Through expression level and function validation, the gene/protein/metabolite biomarkers were confirmed, and the underlying mechanism was revealed: Ni2+ influenced the expression of the Rrm2 gene biomarker, which subsequently affected the expression of the RRM2 protein biomarker. These changes in turn impacted the levels of uric acid and uridine metabolite biomarkers, ultimately inhibiting DNA synthesis, suppressing cell proliferation, increasing intracellular ROS levels and reducing ATP content.
RESUMEN
Large-scale hydrogen production by electrocatalytic water splitting still remains as a critical challenge due to the severe catalyst degradation during the oxygen evolution reaction (OER) in acidic media. In this study, we investigate the structural impacts on catalyst degradation behaviors using three iridium-based oxides, namely SrIrO3, Sr2IrO4, and Sr4IrO6 as model catalysts. These Ir oxides possess different connection configurations of [IrO6] octahedra units in their structure. Stable OER performance is observed on SrIrO3 and attributed to the edge-linked [IrO6] structure and rapid formation of a continuous IrOx layer on its surface, which functions not only as the "real" catalyst but also a shield preventing continuous cation leaching (with <1.0 at.% of Ir leaching). In comparison, both Sr2IrO4 and Sr4IrO6 catalysts demonstrate quick current fading with structure transformation to rutile IrO2 and formation of inconducive SrSO4 precipitates on surface, blocking the reactive sites. Nevertheless, over 60 at.% of Ir leaching is detected from the Sr4IrO6 catalyst due to its isolated [IrO6] structure configuration. Results of this work highlight the structural impacts on the catalyst stability in acidic OER conditions.
RESUMEN
The glutathione S-transferases (GSTs, EC 2.5.1.18) constitute a versatile enzyme family with pivotal roles in plant stress responses and detoxification processes. Recent discoveries attributed the additional function of facilitating anthocyanin intracellular transportation in plants to GSTs. Our study identified 178 VcGST genes from 12 distinct subfamilies in the blueberry genome. An uneven distribution was observed among these genes across blueberry's chromosomes. Members within the same subfamily displayed homogeneity in gene structure and conserved protein motifs, whereas marked divergence was noted among subfamilies. Functional annotations revealed that VcGSTs were significantly enriched in several gene ontology and KEGG pathway categories. Promoter regions of VcGST genes predominantly contain light-responsive, MYB-binding, and stress-responsive elements. The majority of VcGST genes are subject to purifying selection, with whole-genome duplication or segmental duplication serving as key processes that drive the expansion of the VcGST gene family. Notably, during the ripening of the blueberry fruit, 100 VcGST genes were highly expressed, and the expression patterns of 24 of these genes demonstrated a strong correlation with the dynamic content of fruit anthocyanins. Further analysis identified VcGSTF8, VcGSTF20, and VcGSTF22 as prime candidates of VcGST genes involved in the anthocyanin intracellular transport. This study provides a reference for the exploration of anthocyanin intracellular transport mechanisms and paves the way for investigating the spectrum of GST functions in blueberries.
RESUMEN
Nitrogen dioxide (NO2) gas sensors are pivotal in upholding environmental integrity and human health, necessitating heightened sensitivity and exceptional selectivity. Despite the prevalent use of metal oxide semiconductors (MOSs) for NO2 detection, extant solutions exhibit shortcomings in meeting practical application criteria, specifically in response, selectivity, and operational temperatures. Here, we successfully employed a facile microwave-solvothermal method to synthesize a mesoporous CeO2/CNCs nanocomposite. This methodology entails the rapid and comprehensive dispersion of CeO2 nanoparticles onto helical carbon nanocoils (CNCs), resulting in augmented electronic conductivity and an abundance of active sites within the composite. Consequently, the gas-sensing sensitivity of the nanocomposite at room temperature experienced a notable enhancement. Moreover, the presence of cerium oxide and the conversion of Ce3+ and Ce4+ ions facilitated the generation of oxygen vacancies in the composites, thereby further amplifying the sensing performance. Experimental outcomes demonstrate that the nanocomposite exhibited an approximate 9-fold increase in response to 50 ppm NO2 in comparison to pure CNCs at room temperature. Additionally, the CeO2/CNCs sensor displayed remarkable selectivity towards NO2 when exposed to gases such as NH3, CO, SO2, CO2, and C2H5OH. This straightforward microwave-solvothermal method presents an appealing strategy for the research and development of intelligent sensors based on CNCs nanomaterials.
RESUMEN
^{134}Xe is a candidate isotope for neutrinoless double beta decay (0νßß) search. In addition, the two-neutrino case (2νßß) allowed by the standard model of particle physics has not yet been observed. With the 656-kg natural xenon in the fiducial volume of the PandaX-4T detector, which contains 10.4% of ^{134}Xe, and its initial 94.9-day exposure, we have established the most stringent constraints on 2νßß and 0νßß of ^{134}Xe half-lives, with limits of 2.8×10^{22} yr and 3.0×10^{23} yr at 90% confidence level, respectively. The 2νßß (0νßß) limit surpasses the previously reported best result by a factor of 32 (2.7), highlighting the potential of large monolithic natural xenon detectors for double beta decay searches.
RESUMEN
INTRODUCTION: Previous studies have suggested a relationship between bad mood and asthma. Therefore, in this study, a two-sample Mendelian randomization (MR) method was used to explore the correlation between irritability and asthma. MATERIAL AND METHODS: Relevant instrumental variables (IVs) were extracted from the aggregated data of the genome-wide association studies (GWAS) database. Inverse-variance weighting (IVW) and weighted median (WME) were used for the MR analysis to evaluate the causal relationship between irritability and asthma using odds ratios (ORs) and the corresponding 95% confidence intervals (CIs), respectively. The "leave-one-out" method was used for sensitivity analysis. RESULTS: The results of IVW analysis using random-effects models suggested that irritability increased the risk of asthma (OR = 1.954, 95% CI = 1.188-3.214, p = 0.008). The results of WME were consistent with this observation (OR = 1.934, 95% CI = 1.100-3.400, p = 0.021). Additionally, gastroesophageal reflux disease (GERD) might account for approximately 40% of the relationship between irritability and asthma. The sensitivity analysis revealed the stability of the results. CONCLUSION: The causal relationship between irritability and asthma was analyzed through MR analysis. Irritability increased the risk of asthma. GERD might play an important mediating role in this relationship.
RESUMEN
RATIONALE: Anticoagulant rodenticides (ARs) are a substantial fraction of murine types. AR poisoning causes bleeding from the skin, mucous membranes, and multiple organs. However, reports of AR-induced cerebral hemorrhage are scarce. PATIENT CONCERNS: A 40-year-old male presented with dizziness, headache, and limb weakness for 5 days and with coagulopathy. Two days prior to the onset of these symptoms, the patient was exposed to dead mice. DIAGNOSES: Rodenticide intoxication-induced cerebral hemorrhage. INTERVENTIONS: Vitamin K1 infusion, administration of dehydrating agents to reduce intracranial pressure, and correction of acid-base and electrolyte imbalances. OUTCOMES: After 9 days of treatment, the patient's symptoms were relieved, and reexamination revealed that coagulation parameters returned to normal levels. The patient was eventually discharged for observation with oral vitamin K1. CONCLUSIONS: Rodenticide poisoning can lead to intracerebral hemorrhage, and treatment with vitamin K1 infusion is effective. LESSON: Rodenticide poisoning-induced cerebral hemorrhage is rarely reported. Because its symptoms are nonspecific, it is easy to miss the diagnosis or misdiagnose. When patients present with direct and indirect symptoms such as dizziness, headache, and limb weakness, rodenticide poisoning should be considered. Coagulation function and head computed tomography or magnetic resonance imaging examination should be performed at the earliest to confirm the diagnosis and provide timely treatment.
Asunto(s)
Intoxicación , Rodenticidas , Masculino , Humanos , Ratones , Animales , Adulto , Vitamina K 1 , Mareo , Anticoagulantes , Hemorragia Cerebral/inducido químicamente , Hemorragia Cerebral/diagnóstico por imagen , CefaleaRESUMEN
A large number of non-degradable materials have severely damaged the ecological environment. Now, people are increasingly pursuing the use of environmentally friendly materials to replace traditional chemical materials. Polyhydroxyalkonates (PHAs) are receiving increasing attention because of the unique biodegradability and biocompatibility they offer. However, the applications of PHAs are still limited due to high production costs and insufficient study. This project examines the optimal electrospinning parameters for the production of PHA-based fibrous membranes for air filtration. A common biodegradable polyester, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), was electrospun into a nanofibrous membrane with a well-controlled surface microstructure. In order to produce smooth, bead-free fibers with micron-scale diameters, the effect of the process parameters (applied electric field, solution flow rate, inner diameter of hollow needle, and polymer concentration) on the electrospun fiber microstructure was optimized. The well-defined fibrous structure was optimized at an applied electric field of 20 kV, flow rate of 0.5 mL/h, solution concentration of 12 wt.%, and needle inner diameter of 0.21 mm. The morphology of the electrospun PHBV fibrous membrane was observed by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) and Raman spectroscopy were used to explore the chemical signatures and phases of the electrospun PHBV nanofiber. The ball burst strength (BBS) was measured to assess the mechanical strength of the membrane. The small pore size of the nanofiber membranes ensured they had good application prospects in the field of air filtration. The particle filtration efficiency (PFE) of the optimized electrospun PHBV fibrous membrane was above 98% at standard atmospheric pressure.
RESUMEN
Electrochemically converting CO2 back into fuels and chemicals is promising in alleviating the greenhouse effect worldwide. Various high-efficiency catalysts have been achieved, yet the unsatisfied structural stability under CO2 electrolysis conditions restricts their practical application. Herein, a sub-5 nm sized CuInS2 quantum dots (CIS-QDs) based electrocatalyst for converting CO2 into CO are developed. Taking advantage of the stable MâCh (metal-chalcogenide) covalent bonds, and unique p-block metal properties, the as-prepared catalyst exhibits excellent structural stability under large overpotentials and can achieve a high CO Faradaic efficiency (FE) of 86% (total CO2 reduction FE of 89%) at -0.65 V versus reversible hydrogen electrode with long-term durability of 40 h and outstanding current densities of 10.6 mA cm-2 simultaneously. Furthermore, detailed electrochemical analyses revealed that the excellent performance of the as-prepared catalysts shall be attributed to the high-density active sites and fast charge transfer brought by the ultrasmall size of CIS-QDs. This work provides insights into the design of high-density and stable catalytic sites for developing high-performance electrocatalysts.
RESUMEN
Interferon-gamma (IFN-γ) has been established to play a pivotal role in the pathogenesis of tuberculosis (TB). Existing evidence suggests a potential association between the genetic poly-morphisms of IFN-γ and the susceptibility to TB. However, this association remains a topic of controversy. To address this knowledge gap, a meta-analysis was conducted to provide more accurate results regarding their relationship. The pooled odds ratio along with its corresponding 95% confidence interval was calculated using four different gene models. This analytical approach served to evaluate the strength of the association between single nucleotide polymorphisms (SNPs) and TB susceptibility. Additionally, we determined whether a fixed effect model or a random effect model should be applied based on the extent of heterogeneity. Egger's test was used to evaluate publication bias. This study included a total of nine studies, involving 4509 patients with TB and 4378 healthy controls. In non-Asian populations, a C > T mutation at polymorphic variant rs2069705 and a T > C mutation at rs2069718 was associated with an increased risk of TB. Conversely, among Asians, the variants rs2069705, rs2069718, and rs1861494 were not significantly associated with the risk of TB. Importantly, our investigation did not reveal any significant publication bias in the pooled results of the four gene models. In conclusion, this meta-analysis suggests that two SNPs in IFN-γ may be associated with TB susceptibility in non-Asian populations. However, for Asians, there is no evidence to support a conclusive relationship between these SNPs and the risk of TB.
Asunto(s)
Predisposición Genética a la Enfermedad , Tuberculosis , Humanos , Interferón gamma/genética , Tuberculosis/genética , Polimorfismo de Nucleótido SimpleRESUMEN
We report results of a search for dark-matter-nucleon interactions via a dark mediator using optimized low-energy data from the PandaX-4T liquid xenon experiment. With the ionization-signal-only data and utilizing the Migdal effect, we set the most stringent limits on the cross section for dark matter masses ranging from 30 MeV/c^{2} to 2 GeV/c^{2}. Under the assumption that the dark mediator is a dark photon that decays into scalar dark matter pairs in the early Universe, we rule out significant parameter space of such thermal relic dark-matter model.
RESUMEN
Although the novel root-end filling material containing zirconium oxide (NRFM-Zr) which is hydroxyapatite-based may promote osteoblast differentiation, the molecular mechanism remains unclear. The aim of this study is to investigate it underlying the osteogenic/odontogenic differentiation of human osteosarcoma MG-63 cells induced by NRFM-Zr, compared with calcium silicate-based mineral trioxide aggregate (MTA), and glass ionomer cement (GIC). Firstly, three different types of root filling materials were co-cultured with MG-63 cells, and their cell toxicity, alkaline phosphatase (ALP) activity, and calcium ion concentration were evaluated. Next, gene expression profiling microarray was employed to analyze the impact of the materials on the gene expression profile of MG-63 cells. The results of cell viability revealed that NRFM-Zr group had no significant difference compared to the negative control group. After 5 and 7 days of cultivation, both the NRFM-Zr and MTA groups exhibited significantly higher ALP activity compared to the negative control (p < 0.05). Moreover, the NRFM-Zr group had the highest calcium ion concentration, while the GIC group was the lowest (p < 0.05). Gene expression profiling microarray analysis identified 2915 (NRFM-Zr), 2254 (MTA) and 392 (GIC) differentially expressed genes, respectively. GO functional and KEGG pathway analysis revealed that differentially expressed genes of NRFM-Zr, MTA and GIC participated in 8, 6 and 0 differentiation-related pathways, respectively. Comparing the molecular mechanisms of osteogenic/odontogenic differentiation induced by hydroxyapatite-based NRFM-Zr and calcium silicate-based MTA, it was found that they shared similarities in their molecular mechanisms of promoting osteogenic differentiation. NRFM-Zr primarily promotes differentiation and inhibits cell apoptosis, thereby enhancing osteogenic/odontogenic differentiation of MG-63 cells. Furthermore, the inducing efficacy of NRFM-Zr was found to be superior to MTA.
RESUMEN
We report a search for light dark matter produced through the cascading decay of η mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasielastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne·year exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross section is set at 5.9×10^{-37} cm^{2} for a dark matter mass of 0.1 MeV/c^{2} and mediator mass of 300 MeV/c^{2}. The lowest upper limit of η to the dark matter decay branching ratio is 1.6×10^{-7}.
RESUMEN
We report the search results of light dark matter through its interactions with shell electrons and nuclei, using the commissioning data from the PandaX-4T liquid xenon detector. Low energy events are selected to have an ionization-only signal between 60 to 200 photoelectrons, corresponding to a mean nuclear recoil energy from 0.77 to 2.54 keV and electronic recoil energy from 0.07 to 0.23 keV. With an effective exposure of 0.55 tonne·year, we set the most stringent limits within a mass range from 40 MeV/c^{2} to 10 GeV/c^{2} for pointlike dark matter-electron interaction, 100 MeV/c^{2} to 10 GeV/c^{2} for dark matter-electron interaction via a light mediator, and 3.2 to 4 GeV/c^{2} for dark matter-nucleon spin-independent interaction. For DM interaction with electrons, our limits are closing in on the parameter space predicted by the freeze-in and freeze-out mechanisms in the early Universe.
Asunto(s)
Núcleo Celular , ElectronesRESUMEN
Electrochemical nitrogen reduction (eNRR) is a promising strategy to replace the energy- and capital-intensive Haber-Bosch process. Unfortunately, the low selectivity of the eNRR process impedes the industrial application of this approach. In this work, a highly efficient and stable NRR electrocatalyst is obtained via coreduction of Cu and Ag precursors using the holly leaves as reducing agents. The as-obtained Cu3Ag bimetallic nanosheets exhibit excellent NRR performance with an NH3 production rate of 31.3 µg h-1 mg-1cat. and a Faradaic efficiency of 31.3% at -0.2 V vs RHE. According to density functional theory (DFT) calculation, the outstanding performance of Cu3Ag bimetallic nanosheets could be caused by the fact that Ag optimizes the 3d orbital occupation of Cu and synergistically enhances the charge transfer during the NRR process, resulting in a suitable adsorption strength of the intermediates.
RESUMEN
Epidural spinal cord stimulation (ESCS) is a potential treatment for the recovery of the motor function in spinal cord injury (SCI) patients. Since the mechanism of ESCS remains unclear, it is necessary to study the neurophysiological principles in animal experiments and standardize the clinical treatment. In this paper, an ESCS system is proposed for animal experimental study. The proposed system provides a fully implantable and programmable stimulating system for complete SCI rat model, along with a wireless charging power solution. The system is composed of an implantable pulse generator (IPG), a stimulating electrode, an external charging module and an Android application (APP) via a smartphone. The IPG has an area of 25×25 mm2 and can output 8 channels of stimulating currents. Stimulating parameters, including amplitude, frequency, pulse width and sequence, can be programmed through the APP. The IPG was encapsulated with a zirconia ceramic shell and two-month implantable experiments were carried out in 5 rats with SCI. The main focus of the animal experiment was to show that the ESCS system could work stably in SCI rats. The IPG implanted in vivo can be charged through the external charging module in vitro without anesthetizing the rats. The stimulating electrode was implanted according to the distribution of ESCS motor function regions of rats and fixed on the vertebrae. The lower limb muscles of SCI rats can be activated effectively. The two-month SCI rats needed greater stimulating current intensity than the one-month SCI rats The results indicated that the stimulating system provides an effective and simplified tool for studying the ESCS application in motor function recovery for untethered animals.
RESUMEN
MADS-box is a class of transcriptional regulators that are ubiquitous in plants and plays important roles in the process of plant growth and development. Identification and analysis of blueberry MADS-box genes can lay a foundation for their function investigations. In the present study, 249 putative MADS-box genes were identified in the blueberry genome. Those MADS-box genes were distributed on 47 out of 48 chromosomes. The phylogenetic and evolutionary analyses showed that blueberry MADS-box genes were divided into 131 type I members and 118 type II members. The type I genes contained an average of 1.89 exons and the type II genes contained an average of 7.83 exons. Motif analysis identified 15 conserved motifs, of which 4 were related to the MADS domain and 3 were related to the K-box domain. A variety of cis-acting elements were found in the promoter region of the blueberry MADS-box gene, indicating that the MADS-box gene responded to various hormones and environmental alterations. A total of 243 collinear gene pairs were identified, most of which had a Ka/Ks value of less than 1. Nine genes belonging to SEP, AP3/PI, and AGL6 subfamilies were screened based on transcriptomic data. The expression patterns of those nine genes were also verified using quantitative PCR, suggesting that VcMADS6, VcMADS35, VcMADS44, VcMADS58, VcMADS125, VcMADS188, and VcMADS212 had potential functions in blueberry fruit ripening. The results of this study provide references for an in-depth understanding of the biological function of the blueberry MADS-box genes and the mechanism of blueberry fruit ripening.