Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.364
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124901, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39094268

RESUMEN

Fluorescent solvatochromic dyes that are sensitive to the nature of local microenvironmental, have been explored as probes in applications ranging from the imaging biomolecules to understanding of basic biomolecule functions. To expand the scope of fluorescent solvatochromic dyes for G-quadruplex (G4) DNA structures, and to illustrate the relationship between structure and properties, three newly designed D-π-A type fluorescent dyes were synthesized by introducing diarylimidazole to carbazole skeleton linked to benzene, furan or thiophene π-conjugated bridge and connected with pyridinium acceptor, respectively. Their structural characteristics, optical properties, and G4 DNA binding properties were discussed in detail. In general, the incorporation of furan and thiophene as π-conjugated bridges leads the better conjugation and molecular coplanarity with more efficient intramolecular charge transfer (ICT) effect compared with benzene bridge. The fluorescence intensities induced upon interaction were found that TP-6 with thiophene π-conjugated bridge had the strongest response toward G4 DNAs. In addition, the application of this dye as a fluorescent agent for living cell imaging was also demonstrated.

2.
Nat Med ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095594

RESUMEN

Resistance to genotoxic therapies and tumor recurrence are hallmarks of glioblastoma (GBM), an aggressive brain tumor. In this study, we investigated functional drivers of post-treatment recurrent GBM through integrative genomic analyses, genome-wide genetic perturbation screens in patient-derived GBM models and independent lines of validation. Specific genetic dependencies were found consistent across recurrent tumor models, accompanied by increased mutational burden and differential transcript and protein expression compared to its primary GBM predecessor. Our observations suggest a multi-layered genetic response to drive tumor recurrence and implicate PTP4A2 (protein tyrosine phosphatase 4A2) as a modulator of self-renewal, proliferation and tumorigenicity in recurrent GBM. Genetic perturbation or small-molecule inhibition of PTP4A2 acts through a dephosphorylation axis with roundabout guidance receptor 1 (ROBO1) and its downstream molecular players, exploiting a functional dependency on ROBO signaling. Because a pan-PTP4A inhibitor was limited by poor penetrance across the blood-brain barrier in vivo, we engineered a second-generation chimeric antigen receptor (CAR) T cell therapy against ROBO1, a cell surface receptor enriched across recurrent GBM specimens. A single dose of ROBO1-targeted CAR T cells doubled median survival in cell-line-derived xenograft (CDX) models of recurrent GBM. Moreover, in CDX models of adult lung-to-brain metastases and pediatric relapsed medulloblastoma, ROBO1 CAR T cells eradicated tumors in 50-100% of mice. Our study identifies a promising multi-targetable PTP4A-ROBO1 signaling axis that drives tumorigenicity in recurrent GBM, with potential in other malignant brain tumors.

3.
Turk J Gastroenterol ; 35(6): 497-504, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-39101697

RESUMEN

Background/Aims: Recent studies revealed that patients with persistent aminotransferase elevations after antiviral treatment had higher risk of hepatic events; yet its underlying causes remain unclear. Our study aimed to investigate the etiologies of persistent aminotransferase elevations in patients treated with nucleos(t)ide analogs (NAs). Materials and Methods: A retrospective study was conducted on chronic hepatitis B (CHB) patients who had been receiving NA treatment for over a year and had an aminotransferase level greater than 40 IU/mL (more than twice, with a 3-month interval) and subsequently underwent a liver biopsy. Results: The study group included 46 patients (34 males) with a mean age of 44.8 ± 20.3 years (range: 24-71 years).The average dura- tion of NA therapy was 3.7 years (1.1-10.6 years). The etiologies of persistant transaminase elevation were categorized into 4 groups: patients with low hepatitis B virus (HBV) viral load (LVL, n = 11); concurrent non-alcoholic fatty liver disease (NAFLD, n = 12); concurrent other liver diseases (OLD, n = 12); and unknown liver dysfunction (ULD, n = 11). The proportion of G ≥ 2 inflammation was significantly higher in the LVL group (90.9%) compared to NAFLD (33.3%), OLD (50%), and ULD (27.2%) groups (P = .012). The hepatitis B e-antigen (HBeAg)-positive group exhibited a younger age (34.5 ± 10.2 vs. 48.1 ± 9.4 years, P < .001), a lower proportion of fibrosis F ≥ 2 (36.3% vs. 77.1%, P = .012), and a higher prevalence of detectable HBV DNA (54.5% vs.14.2%, P = .00632) compared to the HBeAg-negative group. Conclusion: The etiology of persistent aminotransferase elevations in CHB patients undergoing NAs treatment warrants investigation. Besides the commonly observed NAFLD and low HBV viral load, concurrent presence of other liver diseases requires elucidation.The proportion of G≥2 inflammation was higher in the LVL group.


Asunto(s)
Alanina Transaminasa , Antivirales , Hepatitis B Crónica , Carga Viral , Humanos , Masculino , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/sangre , Hepatitis B Crónica/virología , Femenino , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Antivirales/uso terapéutico , Antivirales/efectos adversos , Anciano , Adulto Joven , Alanina Transaminasa/sangre , Virus de la Hepatitis B , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico , Nucleósidos/uso terapéutico
4.
Hortic Res ; 11(8): uhae166, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39108585

RESUMEN

Sinojackia Hu represents the first woody genus described by Chinese botanists, with all species classified as endangered ornamental plants endemic to China. Their characteristic spindle-shaped fruits confer high ornamental value to the plants, making them favored in gardens and parks. Nevertheless, the fruits likely pose a germination obstacle, contributing to the endangered status of this lineage. Here we report the chromosome-scale genome of S. xylocarpa, and explore the mechanisms underlying its endangered status, as well as its population dynamics throughout evolution. Population genomic analysis has indicated that S. xylocarpa experienced a bottleneck effect following the recent glacial period, leading to a continuous population reduction. Examination of the pericarp composition across six stages of fruit development revealed a consistent increase in the accumulation of lignin and fiber content, responsible for the sturdiness of mature fruits' pericarps. At molecular level, enhanced gene expression in the biosynthesis of lignin, cellulose and hemicellulose was detected in pericarps. Therefore, we conclude that the highly lignified and fibrotic pericarps of S. xylocarpa, which inhibit its seed germination, should be its threatening mechanism, thus proposing corresponding strategies for improved conservation and restoration. This study serves as a seminal contribution to conservation biology, offering valuable insights for the study of other endangered ornamental plants.

5.
Lipids ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107247

RESUMEN

Investigate the predictive value of TyG and lipid ratios on the development of complications and HUA in patients with T2DM. A retrospective cross-sectional study involving 9488 T2DM patients was conducted. They were divided into HUA and NUA group base on SUA level and divided into with and without complications groups according to the diagnosis of the endocrinologist. Necessary information and biochemical parameters were recorded during outpatient visit. TyG index and lipid ratios were calculated, and statistical analysis was carried out to correlate the calculated values and HUA using SPSS version 26.0 for Windows. TyG and lipid ratios were significantly higher in T2DM with HUA or with complications than those with NUA or without complications (p < 0.05). Regression analysis adjusting for confounding factors found TyG (adjusted OR = 1.54; 95% CI: 1.31-1.82; p < 0.05), TG/HDL-C (adjusted OR = 1.21; 95% CI: 1.04-1.40; p < 0.05) and TC/HDL (adjusted OR = 1.36; 95% CI: 1.17-1.57; p < 0.05) was risk factor of HUA in T2DM patients. TyG (adjusted OR = 1.21; 95% CI: 1.02-1.44; p < 0.05), TG/HDL (adjusted OR = 1.19; 95% CI: 1.03-1.38; p < 0.05) and Apo A/Apo B (adjusted OR = 1.41; 95% CI: 1.26-1.58; p < 0.05) was risk factor of complications in T2DM patients. TyG, TG/HDL-C, and TC/HDL can be used as early sensitive target in the occurrence of HUA in T2DM patients and TyG was the most influential risk factor. TyG, TG/HDL-C, and Apo A/Apo B can be used as early sensitive target in the occurrence of complications in T2DM patients and Apo A/Apo B was the most influential risk factor.

6.
Heliyon ; 10(14): e34015, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39092260

RESUMEN

While strides in cancer treatment continue to advance, the enduring challenges posed by cancer metastasis and recurrence persist as formidable contributors to the elevated mortality rates observed in cancer patients. Among the multifaceted factors implicated in tumor recurrence and metastasis, cancer stem cells (CSCs) emerge as noteworthy entities due to their inherent resistance to conventional therapies and heightened invasive capacities. Characterized by their notable abilities for self-renewal, differentiation, and initiation of tumorigenesis, the eradication of CSCs emerges as a paramount objective. Recent investigations increasingly emphasize the pivotal role of post-translational protein modifications (PTMs) in governing the self-renewal and replication capabilities of CSCs. This review accentuates the critical significance of several prevalent PTMs and the intricate interplay of PTM crosstalk in regulating CSC behavior. Furthermore, it posits that the manipulation of PTMs may offer a novel avenue for targeting and eliminating CSC populations, presenting a compelling perspective on cancer therapeutics with substantial potential for future applications.

7.
Heliyon ; 10(14): e34773, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149064

RESUMEN

The dissimilar metal welding joint is connected by the metallurgical bond of intermetallic compounds at the interface, which easily causes stress concentration at the interface and cracks continuously along the interface, resulting in low reliability in impact environments. A novel multi-layer plug and bolt connection for TC4/7A52 dissimilar metal butt joints is proposed in this manuscript and analyzes the influence mechanism of the structural design on impact toughness. The impact toughness of the Ti/Al composite butt joint is 30.3 J/cm2, which is 2.6 times that of the 7A52 BM. The layered toughening design significantly reduces stress concentrations for the butt joint at impact for the Ti/Al composite butt joint. Upon impact, the Ti/Al composite butt joint does not fracture continuously at the V-notch and exhibits significant macroscopic plastic deformation. For the microstructure of each TC4 and 7A52 layer in the impact fracture, more intragranular slip systems are activated and show a higher dislocation density. Therefore, this structural design can enable dissimilar metals to absorb more impact energy during the impact process.

8.
Environ Monit Assess ; 196(9): 809, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138752

RESUMEN

Tea is a vital agricultural product in Taiwan. Due to global warming, the increasing extreme weather events have disrupted tea garden conditions and caused economic losses in agriculture. To address these challenges, a comprehensive tea garden risk assessment model, a Bayesian network (BN), was developed by considering various factors, including meteorological data, disaster events, tea garden environment (location, altitude, tea tree age, and soil characteristics), farming practices, and farmer interviews, and constructed risk assessment indicators for tea gardens based on the climate change risk analysis concept from the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). The results demonstrated an accuracy of over 92% in both validating and testing the model for tea tree damage and yield reduction. Sensitivity analysis revealed that tea tree damage and yield reduction were mutually influential, with weather, fertilization, and irrigation also impacting tea garden risk. Risk analysis under climate change scenarios from various global climate models (GCMs) indicated that droughts may pose the highest risk with up to 41% and 40% of serious tea tree growth damage and tea yield reduction, respectively, followed by cold events that most tea gardens may have less than 20% chances of serious impacts on tea tree growth and tea yield reduction. The impacts of heavy rains get the least concern because all five tea gardens may not be affected in terms of tea tree growth and tea yield with large chances of 67 to 85%. Comparing farming methods, natural farming showed lower disaster risk than conventional and organic approaches. The tea plantation risk assessment model can serve as a valuable resource for analyzing and offering recommendations for tea garden disaster management and is used to assess the impact of meteorological disasters on tea plantations in the future.


Asunto(s)
Teorema de Bayes , Cambio Climático , , Taiwán , Medición de Riesgo , Altitud , Camellia sinensis/crecimiento & desarrollo , Agricultura , Jardines , Monitoreo del Ambiente/métodos
9.
BMC Med Genomics ; 17(1): 203, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123271

RESUMEN

BACKGROUND: A comprehensive understanding of the genetic basis of rare diseases and their regulatory mechanisms is essential for human molecular genetics. However, the genetic mutant spectrum of pathogenic genes within the Chinese population remains underrepresented. Here, we reported previously unreported functional ABHD12 variants in two Chinese families and explored the correlation between genetic polymorphisms and phenotypes linked to PHARC syndrome. METHODS: Participants with biallelic pathogenic ABHD12 variants were recruited from the Chinese Deafness Genetics Cohort. These participants underwent whole-genome sequencing. Subsequently, a comprehensive literature review was conducted. RESULTS: Two Han Chinese families were identified, one with a compound heterozygous variant and the other with a novel homozygous variant in ABHD12. Among 65 PHARC patients, including 62 from the literature and 3 from this study, approximately 90% (57 out of 63) exhibited hearing loss, 82% (50 out of 61) had cataracts, 82% (46 out of 56) presented with retinitis pigmentosa, 79% (42 out of 53) experienced polyneuropathy, and 63% (36 out of 57) displayed ataxia. Seventeen different patterns were observed in the five main phenotypes of PHARC syndrome. A total of 33 pathogenic variants were identified in the ABHD12. Compared with other genotypes, individuals with biallelic truncating variants showed a higher incidence of polyneuropathy (p = 0.006), but no statistically significant differences were observed in the incidence of hearing loss, ataxia, retinitis pigmentosa and cataracts. CONCLUSIONS: The diagnosis of PHARC syndrome is challenging because of its genetic heterogeneity. Therefore, exploring novel variants and establishing genotype-phenotype correlations can significantly enhance gene diagnosis and genetic counseling for this complex disease.


Asunto(s)
Ataxia , Catarata , Estudios de Asociación Genética , Monoacilglicerol Lipasas , Linaje , Fenotipo , Polineuropatías , Retinitis Pigmentosa , Humanos , Masculino , Femenino , Ataxia/genética , Catarata/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Polineuropatías/genética , Monoacilglicerol Lipasas/genética , Mutación , Adulto , Niño , Adolescente , Genotipo
10.
Epigenetics Chromatin ; 17(1): 26, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118189

RESUMEN

Poly (ADP-ribose) polymerase 1 (PARP1) is a multifunctional nuclear enzyme that catalyzes poly-ADP ribosylation in eukaryotic cells. In addition to maintaining genomic integrity, this nuclear enzyme is also involved in transcriptional regulation. PARP1 can trigger and maintain changes in the chromatin structure and directly recruit transcription factors. PARP1 also prevents DNA methylation. However, most previous reviews on PARP1 have focused on its involvement in maintaining genome integrity, with less focus on its transcriptional regulatory function. This article comprehensively reviews the transcriptional regulatory function of PARP1 and its application in disease treatment, providing new ideas for targeting PARP1 for the treatment of diseases other than cancer.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1 , Transcripción Genética , Humanos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Animales , Neoplasias/genética , Neoplasias/metabolismo , Regulación de la Expresión Génica , Metilación de ADN , Cromatina/metabolismo
11.
ACS Nano ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146437

RESUMEN

Integrated diagnostic and therapeutic dressings are desirable to relieve diabetic patients who often suffer from diabetic foot ulcers (DFUs) and peripheral vascular diseases (PVDs). However, it is highly difficult to monitor the pulse waves with fidelity under wet environments and connect the waveforms to diseases through a small strain sensor. Additionally, immobilizing MXenzyme to regulate spatially heterogeneous levels of reactive oxygen species (ROS) and applying active intervention to enhance ulcer healing on a single structure remain a complex task. To address these issues, we designed a multiscale wearable dressing comprising a knitted all-textile sensing array for quantitatively investigating the pulse wave toward PVD diagnosis. MXenzyme was loaded onto the dressing to provide multiple enzyme mimics for anti-inflammatory activities and deliver electrical stimulation to promote wound growth. In mice, we demonstrate that high and uniform expression of the vascular endothelial growth factor (VEGF) is observed only in the group undergoing dual mediation with electrical stimulation and MXenzyme. This observation indicates that the engineered wound dressing has the capability to accelerate healing in DFU. In human patient evaluations, the engineered dressing distinguishes vascular compliance and pulse period, enabling the diagnosis of arteriosclerosis and return blockage, two typical PVDs. The designed and engineered multiscale dressing achieves the purpose of integrating diagnostic peripheral vessel health monitoring and ulcer healing therapeutics for satisfying the practical clinical requirements of geriatric patients.

12.
J Ethnopharmacol ; : 118694, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147001

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Coix seed, the dry mature seed kernel of the gramineous plant coix (Coix lacryma-jobi L. var. ma-yuen Stapf), is widely consumed as a traditional Chinese medicine and functional food in China and South Korea. We have previously demonstrated the protective effect of coixol, a polyphenolic compound extracted from coix, against Toxoplasma gondii (T. gondii) infection-induced lung injury. However, the protective effect of coixol on hepatic injury induced by T. gondii infection have not yet been elucidated. AIM OF THE STUDY: This study explores the impact of coixol on T. gondii infection-induced liver injury and elucidates the underlying molecular mechanisms. MATERIALS AND METHODS: Female BALB/c mice and Kupffer cells (KCs) were employed to establish an acute T. gondii infection model in vivo and an inflammation model in vitro. The study examined coixol's influence on the T. gondii-derived heat shock protein 70 (T.g.HSP70)/toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway in T. gondii-infected liver macrophages. Furthermore, a co-culture system of KCs and NCTC-1469 hepatocytes was developed to observe the impact of liver macrophages infected with T. gondii on hepatocyte injury. RESULTS: Coixol notably inhibited the proliferation of tachyzoites and the expression of T.g.HSP70 in mouse liver and KCs, and attenuated pathological liver injury. Moreover, coixol decreased the production of high mobility group box 1, tumor necrosis factor-α, and inducible nitric oxide synthase by suppressing the TLR4/NF-κB signaling pathway in vitro and in vivo. Coixol also mitigated KCs-mediated hepatocyte injury. CONCLUSIONS: Coixol protects against liver injury caused by T. gondii infection, potentially by diminishing hepatocyte injury through the suppression of the inflammatory cascade mediated by the T.g.HSP70/TLR4/NF-κB signaling pathway in KCs. These findings offer new perspectives for developing coixol as a lead compound for anti-T. gondii drugs.

13.
Semin Cancer Biol ; 104-105: 46-60, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098625

RESUMEN

Gliomas are a diverse group of primary central nervous system neoplasms with no curative therapies available. Brain macrophages comprise microglia in the brain parenchyma, border-associated macrophages in the meningeal-choroid plexus-perivascular space and monocyte-derived macrophages infiltrating the brain. With the great improvement of our recognition of brain macrophages, diverse macrophage populations have been found in the context of glioma, which exhibit functional and phenotypic heterogeneity. We have long thought that brain macrophage senescence is detrimental, manifested by specialized forms of persistent cell cycle arrest and chronic low-grade inflammation. Persistent senescence of macrophages may result in immune dysfunction, potentially contributing to glioma initiation and development. Given the crucial roles played by brain macrophages in glioma, we unravel how brain macrophages undergo reprogramming and their contribution to glioma. We outline general molecular alterations and specific biomarkers in senescent brain macrophages, as well as functional changes (such as metabolism, autophagy, phagocytosis, antigen presentation, and infiltration and recruitment). In addition, recent advances in genetic regulation and mechanisms linked to senescent brain macrophages are discussed. In particular, this review emphasizes the contribution of senescent brain macrophages to glioma, which may drive translational efforts to utilize brain macrophages as a prognostic marker or/and treatment target in glioma. An in-depth comprehending of how brain macrophage senescence functionally influences the tumor microenvironment will be key to our development of innovative therapeutics for glioma.

14.
J Mater Chem B ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136436

RESUMEN

In the past few decades, scaffolds manufactured from composite or hybrid biomaterials of natural or synthetic origin have made great strides in enhancing wound healing and repairing fractures and pathological bone loss. However, the prevailing use of such scaffolds in tissue engineering is accompanied by numerous constraints, including low mechanical stability, poor biological activity, and impaired cell proliferation and differentiation. The performance of scaffolds in wound and bone tissue engineering may be enhanced by some modifications in the synthesis of nanoscale metal-organic framework (nano-MOF) scaffolds. Nano-MOFs have attracted researchers' attention in recent years due to their distinctive features, which include tenability, biocompatibility, good mechanical stability, and ultrahigh surface area. The biological properties of scaffolds are enhanced and tissue regeneration is facilitated by the introduction of nano-MOFs. Moreover, the physicochemical characteristics, drug loading, and ion release capacities of the scaffolds are improved by the nanoscale structure and topological features of nano-MOFs, which also control stem cell differentiation, proliferation, and attachment. This review provides further comprehensive detail about the most recent uses of nano-MOFs in tissue engineering. The distinct characteristics of nano-MOFs are explored in enhancing tissue repair, wound healing, osteoinduction, and bone conductivity. Significant attributes include high antibacterial activity, substantial drug-loading capacity, and the ability to regulate drug release. Finally, this discussion addresses the obstacles, clinical impediments, and considerations encountered in the application of these nanomaterials to diverse scaffolds, tissue-mimicking structures, dressings, fillers, and implants for bone tissue repair and wound healing.

15.
aBIOTECH ; 5(2): 117-126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38978783

RESUMEN

Cas12a (Cpf1), a Class 2 Type V CRISPR/Cas nuclease, has several unique attributes for genome editing and may provide a valuable alternative to Cas9. However, a low editing efficiency due to temperature sensitivity and insufficient cleavage activity of the Cas12a nuclease are major obstacles to its broad application. In this report, we generated two variants, ttAsCas12 Ultra and ttLbCas12a Ultra harboring three (E174R, M537R, and F870L) or two (D156R and E795L) mutations, respectively, by combining the mutations from the temperature-tolerant variants ttAsCas12a (E174R) and ttLbCas12a (D156R), and those from the highly active variants AsCas12a Ultra (M537R and F870L) and LbCas12a Ultra (E795L). We compared editing efficiencies of the five resulting Cas12a variants (LbCas12a, ttLbCas12a, ttLbCas12a Ultra, AsCas12a Ultra, and ttAsCas12 Ultra) at six target sites of four genes in Arabidopsis (Arabidopsis thaliana). The variant ttLbCas12a Ultra, harboring the D156R and E795L mutations, exhibited the highest editing efficiency of all variants tested in Arabidopsis and can be used to generate homozygous or biallelic mutants in a single generation in Arabidopsis plants grown at 22 °C. In addition, optimization of ttLbCas12a Ultra, by varying nuclear localization signal sequences and codon usage, further greatly improved editing efficiency. Collectively, our results indicate that ttLbCas12a Ultra is a valuable alternative to Cas9 for editing genes or promoters in Arabidopsis. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00144-w.

16.
Adv Healthc Mater ; : e2401600, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011808

RESUMEN

The prevalence of retinal neovascular diseases necessitates novel treatments beyond current therapies like laser surgery or anti-VEGF treatments, which often carry significant side effects. A novel therapeutic approach is introduced using copper-containing layered double hydroxides (Cu-LDH) nanozymes integrated with nitric oxide-releasing molecules (GSHNO), forming Cu-LDH@GSHNO aimed at combating oxidative stress within the retinal vascular system. Combination of synthetic chemistry and biological testing, Cu-LDH@GSHNO are synthesized, characterized, and assessed for curative effect in HUVECs and an oxygen-induced retinopathy (OIR) mouse model. The results indicate that Cu-LDH@GSHNO demonstrates SOD-CAT cascade catalytic ability, accompanied with GSH and nitric oxide-releasing capabilities, which significantly reduces oxidative cell damage and restores vascular function, presenting a dual-function strategy that enhances treatment efficacy and safety for retinal vascular diseases. The findings encourage further development and clinical exploration of nanozyme-based therapies, promising a new horizon in therapeutic approaches for managing retinal diseases driven by oxidative stress.

17.
Elife ; 132024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949652

RESUMEN

Tubulin posttranslational modifications (PTMs) modulate the dynamic properties of microtubules and their interactions with other proteins. However, the effects of tubulin PTMs were often revealed indirectly through the deletion of modifying enzymes or the overexpression of tubulin mutants. In this study, we directly edited the endogenous tubulin loci to install PTM-mimicking or -disabling mutations and studied their effects on microtubule stability, neurite outgrowth, axonal regeneration, cargo transport, and sensory functions in the touch receptor neurons of Caenorhabditis elegans. We found that the status of ß-tubulin S172 phosphorylation and K252 acetylation strongly affected microtubule dynamics, neurite growth, and regeneration, whereas α-tubulin K40 acetylation had little influence. Polyglutamylation and detyrosination in the tubulin C-terminal tail had more subtle effects on microtubule stability likely by modulating the interaction with kinesin-13. Overall, our study systematically assessed and compared several tubulin PTMs for their impacts on neuronal differentiation and regeneration and established an in vivo platform to test the function of tubulin PTMs in neurons.


Asunto(s)
Caenorhabditis elegans , Microtúbulos , Procesamiento Proteico-Postraduccional , Tubulina (Proteína) , Animales , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Microtúbulos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Acetilación , Axones/metabolismo , Axones/fisiología , Fosforilación , Regeneración Nerviosa , Cinesinas/metabolismo , Cinesinas/genética
18.
J Am Chem Soc ; 146(29): 20414-20424, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38982611

RESUMEN

The structural dynamics of artificial assemblies, in aspects such as molecular recognition and structural transformation, provide us with a blueprint to achieve bioinspired applications. Here, we describe the assembly of redox-switchable chiral metal-organic cages Λ8/Δ8-[Pd6(CoIIL3)8]28+ and Λ8/Δ8-[Pd6(CoIIIL3)8]36+. These isomeric cages demonstrate an on-off chirality logic gate controlled by their chemical and stereostructural dynamics tunable through redox transitions between the labile CoII-state and static CoIII-state with a distinct Cotton effect. The transition between different states is enabled by a reversible redox process and chiral recognition originating in the tris-chelate Co-centers. All cages in two states are thoroughly characterized by NMR, ESI-MS, CV, CD, and X-ray crystallographic analysis, which clarify their redox-switching behaviors upon chemical reduction/oxidation. The stereochemical lability of the CoII-center endows the Λ8/Δ8-CoII-cages with efficient chiral-induction by enantiomeric guests, leading to enantiomeric isomerization to switch between Λ8/Δ8-CoII-cages, which can be stabilized by oxidation to their chemically inert forms of Λ8/Δ8-CoIII-cages. Kinetic studies reveal that the isomerization rate of the Δ8-CoIII-cage is at least an order of magnitude slower than that of the Δ8-CoII-cage even at an elevated temperature, while its activation energy is 16 kcal mol-1 higher than that of the CoII-cage.

19.
Heliyon ; 10(13): e33437, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040373

RESUMEN

Background: Non-invasive prenatal tests (NIPT) are used to screen for trisomy 21, 18, and 13. This study investigated NIPT performance and the clinical significance of its results. Methods: Pregnant women (n = 282,911) participating in a free NIPT (April 2018-December 2021) were screened for common trisomies, and the results were retrospectively analyzed. NIPT performance was evaluated by its positive predictive value (PPV), sensitivity, and specificity. Results were analyzed using number, percentage, and chi-squared/t-test analyses. Results: After NIPT screening, patients with common trisomies (n = 746) included 457 with T21, 160 with T18, and 129 with T13. Seven false negative cases were identified. High PPV (86.81 %, 56.81 %, 18.18 %), sensitivity (99.25 %, 98.33 %, 100.00 %), and specificity (99.98 %, 99.98 %, 99.97 %) values were detected for trisomy 21, 18, and 13, respectively. The PPVs of common trisomies were significantly different between pregnant women older than 35 (85.53 %, 136/159) and those aged 35 or younger (58.90 %, 311/528) (χ2 = 125.02, P = 2.20e-16). As the NIPT uptake increased from 2018 to 2021, live-born birth defect incidence decreased. Conclusion: NIPT performed well in screening for T21, T18, and T13. Our discoveries offer an important and useful guideline in laboratory and clinical genetic counseling.

20.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3263-3269, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041088

RESUMEN

Numerous studies show that Lonicera macranthoides and L. japonica have significant differences in organic matter. However, there is still a lack of research on inorganic elements between them. In this study, a non-targeted elemental metabolomics method was established by inductively coupled plasma mass spectrometry(ICP-MS), so as to compare the overall differences of inorganic elements between L. macranthoides and L. japonica. In addition, the differential markers were screened, and these differential markers were quantitatively analyzed by the targeted method. The non-targeted elemental metabolomics showed that the established mathematical model could reflect the difference in element content between L. macranthoides and L. japonica. Four inorganic elements such as ~(55)Mn, ~(209)Bi, ~(111)Cd, and ~(85)Rb were confirmed as the differential markers of L. macranthoides and L. japonica based on the screening principles of variable importance in the projection(VIP) value>2.0, P<0.01 and fold change(FC) value>1.2 or <0.80. The targeted quantitative results showed that the content of ~(209)Bi in L. japonica was significantly higher than that in L. macranthoides, while ~(55)Mn, ~(111)Cd, and ~(85)Rb in L. macranthoides were significantly higher than that in L. japonica. The non-targeted and targeted elemental metabolomics methods based on ICP-MS can significantly reflect the overall differences in inorganic elements between L. macranthoides and L. japonica. Exploring the differences between them from the perspective of elements can partly reflect the differences in their drug properties and lay a foundation for further study on the quality control mode of inorganic elements in L. macranthoides and L. japonica and their pharmacological effects.


Asunto(s)
Lonicera , Espectrometría de Masas , Metabolómica , Control de Calidad , Lonicera/química , Espectrometría de Masas/métodos , Metabolómica/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...