Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Apoptosis ; 29(1-2): 86-102, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37752371

RESUMEN

In recent years, colorectal cancer incidence and mortality have increased significantly due to poor lifestyle choices. Despite the development of various treatments, their effectiveness against advanced/metastatic colorectal cancer remains unsatisfactory due to drug resistance. However, ferroptosis, a novel iron-dependent cell death process induced by lipid peroxidation and elevated reactive oxygen species (ROS) levels along with reduced activity of the glutathione peroxidase 4 (GPX4) antioxidant enzyme system, shows promise as a therapeutic target for colorectal cancer. This review aims to delve into the regulatory mechanisms of ferroptosis in colorectal cancer, providing valuable insights into potential therapeutic approaches. By targeting ferroptosis, new avenues can be explored for innovative therapies to combat colorectal cancer more effectively. In addition, understanding the molecular pathways involved in ferroptosis may help identify biomarkers for prognosis and treatment response, paving the way for personalized medicine approaches. Furthermore, exploring the interplay between ferroptosis and other cellular processes can uncover combination therapies that enhance treatment efficacy. Investigating the tumor microenvironment's role in regulating ferroptosis may offer strategies to sensitize cancer cells to cell death induction, leading to improved outcomes. Overall, ferroptosis presents a promising avenue for advancing the treatment of colorectal cancer and improving patient outcomes.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/farmacología , Ferroptosis/genética , Apoptosis , Hierro/metabolismo , Peroxidación de Lípido , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Microambiente Tumoral
2.
Front Cell Dev Biol ; 11: 1225965, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37519298

RESUMEN

Colorectal cancer (CRC) is the second most common malignant tumor of the gastrointestinal tract with the second highest mortality rate and the third highest incidence rate. Early diagnosis and treatment are important measures to reduce CRC mortality. Small extracellular vesicles (sEVs) have emerged as key mediators that facilitate communication between tumor cells and various other cells, playing a significant role in the growth, invasion, and metastasis of cancer cells. Regulatory RNAs have been identified as potential biomarkers for early diagnosis and prognosis of CRC, serving as crucial factors in promoting CRC cell proliferation, invasion and metastasis, angiogenesis, drug resistance, and immune cell differentiation. This review provides a comprehensive summary of the vital role of sEVs as biomarkers in CRC diagnosis and their potential application in CRC treatment, highlighting their importance as a promising avenue for further research and clinical translation.

3.
Front Immunol ; 14: 1212101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469514

RESUMEN

Renal cell carcinoma (RCC) represents an extremely challenging disease in terms of both diagnosis and treatment. It poses a significant threat to human health, with incidence rates increasing at a yearly rate of roughly 2%. Extracellular vesicles (EVs) are lipid-based bilayer structures of membranes that are essential for intercellular interaction and have been linked to the advancement of RCC. This review provides an overview of recent studies on the role of EVs in RCC progression, including involvement in the interaction of tumor cells with M2 macrophages, mediating the generation of immune tolerance, and assuming the role of communication messengers in the tumor microenvironment leading to disease progression. Finally, the " troika " of EVs in RCC therapy is presented, including engineered sEVs' or EVs tumor vaccines, mesenchymal stem cell EVs therapy, and reduction of tumor-derived EVs secretion. In this context, we highlight the limitations and challenges of EV-based research and the prospects for future developments in this field. Overall, this review provides a comprehensive summary of the role of EVs in RCC and their potential as a viable pathway for the future treatment of this complex disease.


Asunto(s)
Carcinoma de Células Renales , Vesículas Extracelulares , Neoplasias Renales , Células Madre Mesenquimatosas , Humanos , Carcinoma de Células Renales/patología , Células Madre Mesenquimatosas/metabolismo , Macrófagos/metabolismo , Neoplasias Renales/patología , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
4.
Front Cell Dev Biol ; 11: 1192937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333986

RESUMEN

Small extracellular vesicles (sEVs) are minute vesicles secreted by various cells that are capable of transporting cargo, including microRNAs, between donor and recipient cells. MicroRNAs (miRNAs), small non-coding RNAs approximately 22 nucleotides in length, have been implicated in a wide array of biological processes, including those involved in tumorigenesis. Emerging evidence highlights the pivotal role of miRNAs encapsulated in sEVs in both the diagnosis and treatment of urological tumors, with potential implications in epithelial-mesenchymal transition, proliferation, metastasis, angiogenesis, tumor microenvironment and drug resistance. This review provides a brief overview of the biogenesis and functional mechanisms of sEVs and miRNAs, followed by a summarization of recent empirical findings on miRNAs encapsulated in sEVs from three archetypal urologic malignancies: prostate cancer, clear cell renal cell carcinoma, and bladder cancer. We conclude by underscoring the potential of sEV-enclosed miRNAs as both biomarkers and therapeutic targets, with a particular focus on their detection and analysis in biological fluids such as urine, plasma, and serum.

5.
Front Pharmacol ; 13: 898519, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105222

RESUMEN

Background: Accurate target identification of small molecules and downstream target annotation are important in pharmaceutical research and drug development. Methods: We present TAIGET, a friendly and easy to operate graphical web interface, which consists of a docking module based on AutoDock Vina and LeDock, a target screen module based on a Bayesian-Gaussian mixture model (BGMM), and a target annotation module derived from >14,000 cancer-related literature works. Results: TAIGET produces binding poses by selecting ≤5 proteins at a time from the UniProt ID-PDB network and submitting ≤3 ligands at a time with the SMILES format. Once the identification process of binding poses is complete, TAIGET then screens potential targets based on the BGMM. In addition, three medical experts and 10 medical students curated associations among drugs, genes, gene regulation, cancer outcome phenotype, 2,170 cancer cell types, and 73 cancer types from the PubMed literature, with the aim to construct a target annotation module. A target-related PPI network can be visualized by an interactive interface. Conclusion: This online tool significantly lowers the entry barrier of virtual identification of targets for users who are not experts in the technical aspects of virtual drug discovery. The web server is available free of charge at http://www.taiget.cn/.

6.
Int J Nanomedicine ; 17: 3603-3618, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990308

RESUMEN

Globally, kidney disease has become a serious health challenge, with approximately 10% of adults suffering with the disease, and increasing incidence and mortality rates every year. Small extracellular vesicles (sEVs) are 30 nm-100 nm sized nanovesicles released by cells into the extracellular matrix (ECM), which serve as mediators of intercellular communication. Depending on the cell origin, sEVs have different roles which depend on internal cargoes including, nucleic acids, proteins, and lipids. Mesenchymal stem cell (MSCs) exert anti-inflammatory, anti-aging, and wound healing functions mainly via sEVs in a stable and safe manner. MSC-derived sEVs (MSC-sEVs) exert roles in several kidney diseases by transporting renoprotective cargoes to reduce oxidative stress, inhibit renal cell apoptosis, suppress inflammation, and mediate anti-fibrosis mechanisms. Additionally, because MSC-sEVs efficiently target damaged kidneys, they have the potential to become the next generation cell-free therapies for kidney disease. Herein, we review recent research data on how MSC-sEVs could be used to treat kidney disease.


Asunto(s)
Vesículas Extracelulares , Enfermedades Renales , Células Madre Mesenquimatosas , Tratamiento Basado en Trasplante de Células y Tejidos , Vesículas Extracelulares/metabolismo , Humanos , Enfermedades Renales/terapia , Células Madre Mesenquimatosas/metabolismo , Cicatrización de Heridas
7.
Oncol Rep ; 48(3)2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35866591

RESUMEN

The present study aimed to explore the role of long non­coding (lnc)RNA FTX and ubiquitin­conjugating enzyme E2C (UBE2C) in promoting the progression of renal cell carcinoma (RCC) and the underlying regulatory mechanism. Relative levels of lncRNA FTX, UBE2C, AKT, CDK1 and CDK6 in RCC cell lines were detected by reverse transcription­quantitative (RT­q). Expression levels of UBE2C, phosphorylated (p)­AKT/AKT, p­CDK1/CDK1 and p­CDK6/CDK6 in RCC and paracancerous specimens and RCC cells were measured by western blot or immunohistochemistry assay. In addition, the proliferative rate, cell viability, cell cycle progression, migratory rate and invasive rate of RCC cells overexpressing lncRNA FTX by lentivirus transfection were determined by a series of functional experiments, including the colony formation assay, MTT assay, flow cytometry, Transwell assay and wound healing assay. The targeted binding relationship in the lncRNA FTX/miR­4429/UBE2C axis was validated by dual­luciferase reporter assay. By intervening microRNA (miR)­4492 and UBE2C by the transfection of miR­4429­mimics or short interfering UBE2C­2, the regulatory effect of lncRNA FTX/miR­4429/UBE2C axis on the progression of RCC was evaluated. Finally, a xenograft model of RCC in nude mice was established by subcutaneous implantation, thus evaluating the in vivo function of lncRNA FTX in the progression of RCC. The results showed that lncRNA FTX and UBE2C were upregulated in RCC specimens and cell lines. The overexpression of lncRNA FTX in RCC cells upregulated UBE2C. In addition, the overexpression of lncRNA FTX promoted the cell viability and proliferative, migratory and invasive capacities of RCC cells and accelerated the cell cycle progression. A dual­luciferase reporter assay validated that lncRNA FTX exerted the miRNA sponge effect on miR­4429, which was bound to UBE2C 3'UTR. Knockdown of UBE2C effectively reversed the regulatory effects of overexpressed lncRNA FTX on the abovementioned phenotypes of RCC cells. In the xenograft model of RCC, the mice implanted with RCC cells overexpressing lncRNA FTX showed a larger tumor size and higher tumor weight than those of controls, while the in vivo knockdown of UBE2C significantly reduced the size of RCC lesions, indicating the reversed cancer­promoting effect of lncRNA FTX. Overall, the present study showed that lncRNA FTX was upregulated in RCC and could significantly promote the proliferative, migratory and invasive capacities, enhancing the viability and accelerating the cell cycle progression of RCC cells by exerting the miRNA sponge effect on miR­4429 and thus upregulating UBE2C. lncRNA FTX and UBE2C are potential molecular biomarkers and therapeutic targets of RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , ARN Largo no Codificante , Enzimas Ubiquitina-Conjugadoras , Animales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/genética , Ratones , Ratones Desnudos , MicroARNs/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
8.
Cancers (Basel) ; 15(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36612097

RESUMEN

Extracellular vesicles (EVs) are important mediators of communication between tumor cells and normal cells. These vesicles are rich in a variety of contents such as RNA, DNA, and proteins, and can be involved in angiogenesis, epithelial-mesenchymal transition, the formation of pre-metastatic ecological niches, and the regulation of the tumor microenvironment. Small extracellular vesicles (sEVs) are a type of EVs. Currently, the main treatments for urological tumors are surgery, radiotherapy, and targeted therapy. However, urological tumors are difficult to diagnose and treat due to their high metastatic rate, tendency to develop drug resistance, and the low sensitivity of liquid biopsies. Numerous studies have shown that sEVs offer novel therapeutic options for tumor treatment, such as tumor vaccines and tumor drug carriers. sEVs have attracted a great deal of attention owing to their contribution to in intercellular communication, and as novel biomarkers, and role in the treatment of urological tumors. This article reviews the research and applications of sEVs in the diagnosis and treatment of urological tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA