Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicol Res (Camb) ; 11(1): 255-260, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35237430

RESUMEN

The aristolochic acids (AAs), derived from Aristolochia and Asarum species used widely in herbal medicines, are closely associated with liver cancer. The major AA derivatives are aristolochic acid I (AAI) and II (AAII), which can bind DNA covalently to form AA-DNA adducts after metabolic activation in vivo. Among all these AA-DNA adducts, 7-(deoxyadenosine-N6-yl) aristolactam I (dA-AL-I) is the most abundant and persistent DNA lesion in patients. However, the direct evidence indicating AA exposure in human liver cancer is still missing. Here, we analyzed dA-AL-I adduct, the direct biomarker of AAI exposure, by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-TQ/MS) in 209 liver cancer patients. Also, DNA samples from mice treated with/without AAI were used as positive and negative controls. dA-AL-I adduct was present in 110 of 209 (52.6%) patients, indicating that these patients were exposed to AAI prior to their clinical investigations and also had a worse prognosis. The relative high AA exposure rate and worse prognosis in our cohort of patients emphasize the significance to increase public awareness to avoid the use of herbal medicine containing AAs or their derivatives.

2.
Hepatology ; 71(3): 1130-1131, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31609009
3.
Hepatology ; 71(3): 929-942, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31692012

RESUMEN

BACKGROUND AND AIMS: Aristolochic acid (AA) exposure has been statistically associated with human liver cancers. However, direct evidence of AA exposure-induced liver cancer is absent. This study aims to establish a direct causal relationship between AA exposure and liver cancers based on a mouse model and then explores the AA-mediated genomic alterations that could be implicated in human cancers with AA-associated mutational signature. APPROACH AND RESULTS: We subjected mice, including phosphatase and tensin homolog (Pten)-deficient ones, to aristolochic acid I (AAI) alone or a combination of AAI and CCl4 . Significantly, AAI exposure induced mouse liver cancers, including hepatocellular carcinoma (HCC) and combined HCC and intrahepatic cholangiocarcinoma, in a dose-dependent manner. Moreover, AAI exposure also enhanced tumorigenesis in these CCl4 -treated or Pten-deficient mice. AAI led to DNA damage and AAI-DNA adduct that could initiate liver cancers through characteristic adenine-to-thymine transversions, as indicated by comprehensive genomic analysis, which revealed recurrent mutations in Harvey rat sarcoma virus oncogene. Interestingly, an AA-associated mutational signature was mainly implicated in human liver cancers, especially from China. Moreover, we detected the AAI-DNA adduct in 25.8% (16/62) of paratumor liver tissues from randomly selected Chinese patients with HCC. Furthermore, based on phylogenetic analysis, the characteristic mutations were found in the initiating malignant clones in the AA-implicated mouse and human liver cancers where the mutations of tumor protein p53 and Janus kinase 1 were prone to be significantly enriched in the AA-affected human tumors. CONCLUSIONS: This study provides evidence for AA-induced liver cancer with the featured mutational processes during malignant clonal evolution, laying a solid foundation for the prevention and diagnosis of AA-associated human cancers, especially liver cancers.


Asunto(s)
Ácidos Aristolóquicos/toxicidad , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Mutación , Animales , Neoplasias de los Conductos Biliares/inducido químicamente , Neoplasias de los Conductos Biliares/genética , Tetracloruro de Carbono/toxicidad , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Colangiocarcinoma/inducido químicamente , Colangiocarcinoma/genética , Daño del ADN , Relación Dosis-Respuesta a Droga , Humanos , Janus Quinasa 1/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína p53 Supresora de Tumor/genética , Quinasas raf/fisiología
4.
BMC Microbiol ; 19(1): 36, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30744555

RESUMEN

BACKGROUND: A major facilitator superfamily transporter Dehp2 was recently shown to be playing an important role in transport and biodegradation of haloacids in Paraburkholderia caribensis MBA4, and Dehp2 is phylogenetically conserved in Burkholderia sensu lato. RESULTS: We designed both Burkholderia sensu stricto-specific and Paraburkholderia-specific qPCR assays based on dehp2 and 16S rRNA, and validated the qPCR assays in 12 bacterial strains. The qPCR assays could detect single species of Burkholderia sensu stricto or Paraburkholderia with high sensitivity and discriminate them in mixtures with high specificity over a wide dynamic range of relative concentrations. At relatively lower cost compared with sequencing-based approach, the qPCR assays will facilitate discrimination of Burkholderia sensu stricto and Paraburkholderia in a large number of samples. CONCLUSIONS: For the first time, we report the utilization of a haloacids transporter gene for discriminative purpose in Burkholderia sensu lato. This enables not only quick decision on proper handling of putative pathogenic samples in Burkholderia sensu stricto group but also future exploitation of relevant species in Paraburkholderia group for haloacids biodegradation purposes.


Asunto(s)
Burkholderia/genética , Burkholderiaceae/genética , Proteínas Portadoras/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
5.
BMC Genomics ; 18(1): 946, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29202695

RESUMEN

BACKGROUND: The differentiation and maturation trajectories of fetal liver stem/progenitor cells (LSPCs) are not fully understood at single-cell resolution, and a priori knowledge of limited biomarkers could restrict trajectory tracking. RESULTS: We employed marker-free single-cell RNA-Seq to characterize comprehensive transcriptional profiles of 507 cells randomly selected from seven stages between embryonic day 11.5 and postnatal day 2.5 during mouse liver development, and also 52 Epcam-positive cholangiocytes from postnatal day 3.25 mouse livers. LSPCs in developing mouse livers were identified via marker-free transcriptomic profiling. Single-cell resolution dynamic developmental trajectories of LSPCs exhibited contiguous but discrete genetic control through transcription factors and signaling pathways. The gene expression profiles of cholangiocytes were more close to that of embryonic day 11.5 rather than other later staged LSPCs, cuing the fate decision stage of LSPCs. Our marker-free approach also allows systematic assessment and prediction of isolation biomarkers for LSPCs. CONCLUSIONS: Our data provide not only a valuable resource but also novel insights into the fate decision and transcriptional control of self-renewal, differentiation and maturation of LSPCs.


Asunto(s)
Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Hígado/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Biomarcadores/metabolismo , Células Cultivadas , Células Madre Embrionarias/citología , Hígado/embriología , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...