Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
APMIS ; 132(6): 382-415, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38469726

RESUMEN

Rheumatoid arthritis (RA) is a multifaceted autoimmune disorder characterized by chronic inflammation and joint destruction. Recent research has elucidated the intricate interplay between gut microbiota and RA pathogenesis, underscoring the role of microbiota-derived metabolites as pivotal contributors to disease development and progression. The human gut microbiota, comprising a vast array of microorganisms and their metabolic byproducts, plays a crucial role in maintaining immune homeostasis. Dysbiosis of this microbial community has been linked to numerous autoimmune disorders, including RA. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), tryptophan derivatives, Trimethylamine-N-oxide (TMAO), bile acids, peptidoglycan, and lipopolysaccharide (LPS), exhibit immunomodulatory properties that can either exacerbate or ameliorate inflammation in RA. Mechanistically, these metabolites influence immune cell differentiation, cytokine production, and gut barrier integrity, collectively shaping the autoimmune milieu. This review highlights recent advances in understanding the intricate crosstalk between microbiota metabolites and RA pathogenesis and also discusses the potential of specific metabolites to trigger or suppress autoimmunity, shedding light on their molecular interactions with immune cells and signaling pathways. Additionally, this review explores the translational aspects of microbiota metabolites as diagnostic and prognostic tools in RA. Furthermore, the challenges and prospects of translating these findings into clinical practice are critically examined.


Asunto(s)
Artritis Reumatoide , Biomarcadores , Disbiosis , Microbioma Gastrointestinal , Humanos , Artritis Reumatoide/microbiología , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Biomarcadores/metabolismo , Disbiosis/microbiología , Animales , Ácidos Grasos Volátiles/metabolismo
2.
iScience ; 26(11): 108203, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026176

RESUMEN

China's progress in decarbonizing its transportation, particularly vehicle electrification, is notable. However, the economically effective pathways are underexplored. To find out how much cost is necessary for carbon neutrality for the light-duty vehicle (LDV) sector, this study examines twenty decarbonization pathways, combining the New Energy and Oil Consumption Credit model and the China-Fleet model. We find that the 2060 zero-greenhouse gas (GHG) emission goal for LDVs is achievable via electrification if the battery pack cost is under CNY483/kWh by 2050. However, an extra of CNY8.86 trillion internal subsidies is needed under pessimistic battery cost scenarios (CNY759/kWh in 2050) to eliminate 246 million tonnes of CO2-eq by 2050 ensuring over 80% market penetration of battery electric vehicles (BEVs) in 2050. Moreover, the promotion of fuel cell electric vehicles is synergy with BEVs to mitigate the carbon abatement difficulties, decreasing up to 34% of the maximum marginal abatement internal investment.

3.
J Environ Public Health ; 2023: 7571696, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761245

RESUMEN

Objective: An increasing risk of developing osteoporosis which is characterized by bone production weakness and microarchitectural deterioration is found among postmenopausal women. MicroRNAs (miRNAs) are secreted into the circulation from cells of various tissues in response to local disease severity including bone diseases. Herein, we set out to identify candidate miRNAs predictable for osteoporosis incidence in postmenopausal elderly women. Methods: The circulating miRNA expression profiles deposited in the dataset accessioned as GSE201543 were downloaded from the GEO database. The study included 176 postmenopausal women who underwent BMD testing, including 96 women reporting osteoporosis and 70 women reporting normal BMD. All subjects were submitted their serum samples for measurements of bone metabolism markers. Results: The miRNA expression profiles of the GSE201543 dataset were differentially analyzed and found 97 miRNAs being upregulated concomitantly with 31 miRNAs being downregulated in the serum samples between osteoporotic postmenopausal women and postmenopausal women with normal BMD. Osteoporotic postmenopausal women were demonstrated with elevated serum levels of miR-340-5p and miR-506-3p when compared to normal postmenopausal women. Pearson correlation analysis demonstrated that circulating miR-340-5p and miR-506-3p expressions were increased as BAP, ß-CTx, and PINP levels increased, but osteocalcin and 25-(OH)VitD levels are declined in osteoporotic postmenopausal women. Results of the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) showed circulating miR-340-5p and miR-506-3p expressions alone or combined together produced 0.843 AUC, 0.851 AUC, and 0.935 AUC, respectively, when used to predict the incidence of osteoporosis in postmenopausal women. Conclusion: Our work suggested that circulating miR-340-5p and miR-506-3p function as osteo-miRNAs in postmenopausal women and may serve as potential noninvasive biomarkers for the incidence of osteoporosis in postmenopausal women.


Asunto(s)
MicroARN Circulante , Osteoporosis , Anciano , Femenino , Humanos , Biomarcadores/sangre , Osteoporosis/genética , Posmenopausia/genética , MicroARN Circulante/genética
4.
Opt Express ; 30(7): 12014-12025, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473131

RESUMEN

The combination of a digital micromirror device (DMD) lithography system and a rotatable polarizer provides a simple and convenient method to achieve the pixelated liquid crystal micropolarizer (LCMP) array for polarization imaging. In this paper, two crucial problems restricting the high-precision fabrication of LCMP array are pointed out and settled: the dislocation of LCMP pixels caused by parallelism error of the rotating polarizer and the grid defect caused by the gap between micromirrors. After correction, the maximum deviation of the fabricated LCMP pixels was reduced from 3.23 µm to 0.11 µm and the grid defect is eliminated. The correction method reported here lays a good foundation for the fine processing of liquid crystal devices with arbitrary photoalignment structure by using the DMD system.

5.
Lab Chip ; 22(10): 1951-1961, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35377378

RESUMEN

Real-time and fast trapping and tagging of microfeatures, such as microparticles and cells, are of great significance for biomedical research. In this work, we propose a novel in situ digital projection lithography technology that integrates real-time, in situ generation of digital masks for particle processing and fluid control into conventional DMD-based projection lithography. With the help of image recognition technology, we rapidly resolve the information of the microparticle profile or channel location, combining the selection of existing masks of different shapes, thus enabling in situ generation of user-customized micro-trap arrays and microfilter arrays for particle trapping and tagging. The success in trapping and filtering single particles, particle arrays, and cells has indicated the promising prospects of this novel technology for broad applications in microfluidics, single-cell analysis, and early-stage disease diagnostics.


Asunto(s)
Microfluídica , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Tecnología
6.
Micromachines (Basel) ; 13(1)2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35056246

RESUMEN

Not satisfied with the current stage of the extensive research on 3D printing technology for polymers and metals, researchers are searching for more innovative 3D printing technologies for glass fabrication in what has become the latest trend of interest. The traditional glass manufacturing process requires complex high-temperature melting and casting processes, which presents a great challenge to the fabrication of arbitrarily complex glass devices. The emergence of 3D printing technology provides a good solution. This paper reviews the recent advances in glass 3D printing, describes the history and development of related technologies, and lists popular applications of 3D printing for glass preparation. This review compares the advantages and disadvantages of various processing methods, summarizes the problems encountered in the process of technology application, and proposes the corresponding solutions to select the most appropriate preparation method in practical applications. The application of additive manufacturing in glass fabrication is in its infancy but has great potential. Based on this view, the methods for glass preparation with 3D printing technology are expected to achieve both high-speed and high-precision fabrication.

7.
Appl Opt ; 60(29): 9074-9081, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34623988

RESUMEN

The step-stitching issue occurring in digital micromirror device (DMD)-based step lithography, which refers to overlapping and misalignment, has dramatically influenced the overall accuracy of the exposed patterns. To address this technical challenge, this paper proposes a testing method to resolve the system tolerance parameters, inclination angle with 0.060∘±0.003∘, and magnification with 3.60399±0.00020, which induce the stitching problem. With these two parameters, a compensation strategy on motion is implemented to precisely control the step distance of the stage so that the edge-to-edge stitching error is reduced to about 0.150 µm and the corner-to-corner stitching error is less than 0.500 µm. The changes of the linewidth induced by the displacement error due to the stage control accuracy and illumination nonuniformity caused by the light source are simulated and analyzed, and the image preprocessing method based on a gradual grayscale mask is employed to improve the quality of stitching. Using this method, the linewidth difference is controlled to be within 0.150 µm. After finishing all the corrections and imaging preprocessing, the transverse error has become almost invisible, and the longitudinal error has been reduced by 97.72%. Experimental results demonstrate that the improved stitching accuracy could achieve high-fidelity devices.

8.
Ecol Evol ; 11(12): 7917-7926, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34188861

RESUMEN

Taraxacum kok-saghyz Rodin (TKS) is an important potential alternative source of natural inulin and rubber production, which has great significance for the production of industrial products. In this study, we sequenced 58 wild TKS individuals collected from four different geography regions worldwide to elucidate the population structure, genetic diversity, and the patterns of evolution. Also, the first flowering time, crown diameter, morphological characteristics of leaf, and scape of all TKS individuals were measured and evaluated statistically. Phylogenetic analysis based on SNPs and cluster analysis based on agronomic traits showed that all 58 TKS individuals could be roughly divided into three distinct groups: (a) Zhaosu County in Xinjiang (population AB, including a few individuals from population C and D); (b) Tekes County in Xinjiang (population C); and (c) Tuzkol lake in Kazakhstan (population D). Population D exhibited a closer genetic relationship with population C compared with population AB. Genetic diversity analysis further revealed that population expansion from C and D to AB occurred, as well as gene flow between them. Additionally, some natural selection regions were identified in AB population. Function annotation of candidate genes identified in these regions revealed that they mainly participated in biological regulation processes, such as transporter activity, structural molecule activity, and molecular function regulator. We speculated that the genes identified in selective sweep regions may contribute to TKS adaptation to the Yili River Valley of Xinjiang. In general, this study provides new insights in clarifying population structure and genetic diversity analysis of TKS using SNP molecular markers and agronomic traits.

9.
Environ Sci Technol ; 55(10): 6944-6956, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33945267

RESUMEN

China has implemented strong incentives to promote the market penetration of plug-in electric vehicles (PEVs). In this study, we compare the well-to-wheels (WTW) greenhouse gas (GHG) emission intensities of PEVs with those of gasoline vehicles at the provincial level in the year 2017 by considering the heterogeneity in the consumption-based electricity mix and climate impacts on vehicle fuel economy. Results show a high variation of provincial WTW GHG emission intensities for battery electric vehicles (BEVs, 22-293 g CO2eq/km) and plug-in hybrid electric vehicles (PHEVs, 82-298 g CO2eq/km) in contrast to gasoline internal combustion engine vehicles (ICEVs, 227-245 g CO2eq/km) and gasoline hybrid electric vehicles (HEVs, 141-164 g CO2eq/km). Due to the GHG-intensive coal-based electricity and cold weather, WTW GHG emission intensities of BEVs and PHEVs are higher than those of gasoline ICEVs in seven and ten northern provinces in China, respectively. WTW GHG emission intensities of gasoline HEVs, on the other hand, are lower in 18 and 26 provinces than those of BEVs and PHEVs, respectively. The analysis suggests that province-specific PEV and electric grid development policies should be considered for GHG emission reductions of on-road transportation in China.


Asunto(s)
Gasolina , Gases de Efecto Invernadero , China , Electricidad , Gasolina/análisis , Efecto Invernadero , Vehículos a Motor , Emisiones de Vehículos/análisis
10.
Earths Future ; 9(4): e2020EF001665, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33869651

RESUMEN

Observing the spatial heterogeneities of NO2 air pollution is an important first step in quantifying NOX emissions and exposures. This study investigates the capabilities of the Tropospheric Monitoring Instrument (TROPOMI) in observing the spatial and temporal patterns of NO2 pollution in the continental United States. The unprecedented sensitivity of the sensor can differentiate the fine-scale spatial heterogeneities in urban areas, such as emissions related to airport/shipping operations and high traffic, and the relatively small emission sources in rural areas, such as power plants and mining operations. We then examine NO2 columns by day-of-the-week and find that Saturday and Sunday concentrations are 16% and 24% lower respectively, than during weekdays. We also analyze the correlation of daily maximum 2-m temperatures and NO2 column amounts and find that NO2 is larger on the hottest days (>32°C) as compared to warm days (26°C-32°C), which is in contrast to a general decrease in NO2 with increasing temperature at moderate temperatures. Finally, we demonstrate that a linear regression fit of 2019 annual TROPOMI NO2 data to annual surface-level concentrations yields relatively strong correlation (R 2 = 0.66). These new developments make TROPOMI NO2 satellite data advantageous for policymakers and public health officials, who request information at high spatial resolution and short timescales, in order to assess, devise, and evaluate regulations.

11.
Int J Biol Macromol ; 183: 45-54, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33892033

RESUMEN

The poly(lactic acid) (PLA) composites with the silane coupling agent treated basalt fiber (SBF) and basalt fiber powder (SBFP) were prepared. The crystalline morphology, mechanical properties, and heat resistance of PLA/SBF/SBFP composites were investigated. The results indicated that SBF or SBFP not only acted as heterogeneous nucleating agents for PLA crystallization but also improved the mechanical properties and heat resistance of PLA. Morphological analyses showed that SBFP could play nucleating role to reduce the spherulites size of PLA, and SBF could restrict the mobility of PLA chains and construct interface crystallization for PLA during isothermal crystallization process. The composites with higher SBF loading, the "Transcrystalline-network" built in the composites significantly improved the heat resistance properties of PLA. Due to the synergistic effect of SBF and SBFP, the PLA/SBF/SBFP composites showed high heat deformation temperature (HDT), especially after isothermal crystallization, the HDT increased to 150.5 °C for the PLA/SBF/SBFP 50/10/40 composite, much higher (about 190%) than that of pure PLA (71.7 °C).


Asunto(s)
Poliésteres/química , Silicatos/química , Cristalización , Conformación Molecular , Polvos , Temperatura
12.
Opt Lett ; 46(6): 1377-1380, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720191

RESUMEN

In this paper, we propose spatiotemporal modulation projection lithography (STPL) technology, which is a spatiotemporal modulation technology applied to the conventional digital micromirror device (DMD) projection lithography system. Through coordinating the micro-movement of the piezoelectric stage, the flexible pattern generation of DMD, and the exposure time, the proposed STPL enables us to fabricate a microstructure with smooth edges, accurate linewidth, and accurate line position. Further application on fabricating a diffraction lens has been implemented. The edge sawtooth of the Fresnel zone plate fabricated by using the STPL is reduced to 0.3 µm, the error between the actual measured linewidth and the ideal linewidth is only within ±0.1µm, and the focal length is 15 mm, which is basically consistent with the designed focal length. These results indicated that STPL can serve a significant role in the micromanufacturing field for achieving high-fidelity microdevices.

13.
Proc Natl Acad Sci U S A ; 117(49): 31018-31025, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229579

RESUMEN

The Chinese "coal-to-gas" and "coal-to-electricity" strategies aim at reducing dispersed coal consumption and related air pollution by promoting the use of clean and low-carbon fuels in northern China. Here, we show that on top of meteorological influences, the effective emission mitigation measures achieved an average decrease of fine particulate matter (PM2.5) concentrations of ∼14% in Beijing and surrounding areas (the "2+26" pilot cities) in winter 2017 compared to the same period of 2016, where the dispersed coal control measures contributed ∼60% of the total PM2.5 reductions. However, the localized air quality improvement was accompanied by a contemporaneous ∼15% upsurge of PM2.5 concentrations over large areas in southern China. We find that the pollution transfer that resulted from a shift in emissions was of a high likelihood caused by a natural gas shortage in the south due to the coal-to-gas transition in the north. The overall shortage of natural gas greatly jeopardized the air quality benefits of the coal-to-gas strategy in winter 2017 and reflects structural challenges and potential threats in China's clean-energy transition.


Asunto(s)
Contaminación del Aire/análisis , Carbón Mineral/análisis , Gas Natural/análisis , Estaciones del Año , China , Ciudades , Política Ambiental , Calefacción , Material Particulado/análisis
14.
Nat Commun ; 11(1): 5212, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060579

RESUMEN

For over ten years, China has been the largest vehicle market in the world. In order to address energy security and air quality concerns, China issued the Dual Credit policy to improve vehicle efficiency and accelerate New Energy Vehicle adoption. In this paper, a market-penetration model is combined with a vehicle fleet model to assess implications on greenhouse gas (GHG) emissions and energy demand. Here we use this integrated modeling framework to study several scenarios, including hypothetical policy tweaks, oil price, battery cost and charging infrastructure for the Chinese passenger vehicle fleet. The model shows that the total GHGs of the Chinese passenger vehicle fleet are expected to peak in 2032 under the Dual Credit policy. A significant reduction in GHG emissions is possible if more efficient internal combustion engines continue to be part of the technology mix in the short term with more New Energy Vehicle penetration in the long term.

15.
Nat Energy ; 5(12): 1051-1052, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33052987

RESUMEN

[This corrects the article DOI: 10.1038/s41560-020-0662-1.].

16.
J Food Sci Technol ; 57(10): 3823-3835, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32904055

RESUMEN

Landraces and historical varieties are necessary germplasms for genetic improvement of modern cereals. Allelic variations at the Glu-1 and Glu-3 loci in 300 common wheat landraces and 43 historical varieties from Xinjiang, China, were evaluated by Sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and allele-specific molecular markers. Among the materials investigated, three, nine, and seven alleles were identified from the Glu-A1, Glu-B1, and Glu-D1 loci, respectively, and a total of 26 high-molecular-weight glutenin subunit (HMW-GS) combinations were found, of which 18 combinations were identified in landraces and historical varieties. Allelic frequency of HMW-GS combinations null, 7 + 8, 2 + 12 was found to be the highest in both the landraces (63.3%) and historical varieties (39.5%). Besides, some distinctive HMW-GS alleles, such as the novel Glu-B1 allele 6.1* + 8.1* and Glu-D1 alleles 2.6 + 12, 2.1 + 10.1, and 5** + 10 were observed in Xinjiang wheat landraces. Among the Glu-A3 and Glu-B3 loci of landraces and historical varieties, a total of eight and nine alleles were found, respectively. At each locus, two novel alleles were identified. A total of 33 low-molecular-weight glutenin subunit (LMW-GS) combinations of Glu-A3 and Glu-B3 were identified, with 31 and 14 combinations occurring in landraces and historical varieties, respectively, but only 10 combinations shared by both of them. As Glu-D1, Glu-A3, and Glu-B3 have highest contribution to the end-use quality and processing properties as compared to Glu-A1, Glu-B1, and Glu-D3 locus, the novel or distinctive HMW-GS and LMW-GS alleles in these loci could potentially be utilized for the improvement in the quality of modern wheat.

17.
Geophys Res Lett ; 47(17): e2020GL089269, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32904906

RESUMEN

TROPOMI satellite data show substantial drops in nitrogen dioxide (NO2) during COVID-19 physical distancing. To attribute NO2 changes to NO x emissions changes over short timescales, one must account for meteorology. We find that meteorological patterns were especially favorable for low NO2 in much of the United States in spring 2020, complicating comparisons with spring 2019. Meteorological variations between years can cause column NO2 differences of ~15% over monthly timescales. After accounting for solar angle and meteorological considerations, we calculate that NO2 drops ranged between 9.2% and 43.4% among 20 cities in North America, with a median of 21.6%. Of the studied cities, largest NO2 drops (>30%) were in San Jose, Los Angeles, and Toronto, and smallest drops (<12%) were in Miami, Minneapolis, and Dallas. These normalized NO2 changes can be used to highlight locations with greater activity changes and better understand the sources contributing to adverse air quality in each city.

18.
J Appl Genet ; 61(3): 379-389, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32548810

RESUMEN

Group-1 homoelog genes in wheat genomes encode storage proteins and are the major determinants of wheat product properties. Consequently, understanding the genetic diversity of group-1 homoelogs and genes encoding storage proteins, especially the low-molecular-weight glutenins (LMW-GSs), within wheat landrace genomes is necessary to further improve the quality of modern wheat crops. The genetic diversity of group-1 homoelogs in 75 Xinjiang winter wheat landraces was evaluated by Diversity Arrays Technology (DArT) markers. These data were used to select 15 landraces for additional LMW-GS gene isolation. The genetic similarity coefficients among landraces were highly similar regardless if considering the diversity markers on 1A, 1B, and 1D chromosomes individually or using all of the markers together. These similarities were evinced by the generation of four similar cluster dendrograms that comprised 11-15 landrace groups, regardless of the dataset used to generate the dendrograms. A total of 105 LMW-GS sequences corresponding to 79 unique genes were identified overall by using primers designed to target Glu-A3 and Glu-B3 loci, and 54 mature proteins were predicted from the unique LMW-GS genes. Nine novel chimeric LMW-GS genes were also identified, of which, one was recombinant for -i/-m, one for -s/-m, and seven for -m/-m parent genes, respectively. Phylogenetic analysis separated all of the LMW-GSs into three clades that were supported by moderate bootstrap values (> 70%). The clades corresponded to LMW-GS genes primarily harboring different N-terminals. These results provide useful information for better understanding the evolutionary genetics of the important Glu-3 locus of wheat, and they also provide new novel gene targets that can potentially be exploited to improve wheat quality.


Asunto(s)
Genes de Plantas , Variación Genética , Triticum/genética , Secuencia de Aminoácidos , Cromosomas de las Plantas , Cartilla de ADN , Glútenes/genética , Filogenia
19.
Nat Commun ; 11(1): 824, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047159

RESUMEN

As natural gas demand surges in China, driven by the coal-to-gas switching policy, widespread attention is focused on its impacts on global gas supply-demand rebalance and greenhouse gas (GHG) emissions. Here, for the first time, we estimate well-to-city-gate GHG emissions of gas supplies for China, based on analyses of field-specific characteristics of 104 fields in 15 countries. Results show GHG intensities of supplies from 104 fields vary from 6.2 to 43.3 g CO2eq MJ-1. Due to the increase of GHG-intensive gas supplies from Russia, Central Asia, and domestic shale gas fields, the supply-energy-weighted average GHG intensity is projected to increase from 21.7 in 2016 to 23.3 CO2eq MJ-1 in 2030, and total well-to-city-gate emissions of gas supplies are estimated to grow by ~3 times. While securing gas supply is a top priority for the Chinese government, decreasing GHG intensity should be considered in meeting its commitment to emission reductions.

20.
Opt Express ; 27(22): 31956-31966, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684417

RESUMEN

A flexible and efficient strategy, digital micromirror devices (DMD) based multistep lithography (DMSL), is proposed to fabricate arrays of user-defined microstructures. Through the combination of dose modulation, flexible pattern generation of DMD, and high-resolution step movement of piezoelectrical stage (PZS), this method enables prototyping a board range of 2D lattices with periodic/nonperiodic spatial distribution and arbitrary shapes and the critical feature size is down to 600 nm. We further explore the use of DMSL to fabricate microlens array by combining with the thermal reflowing process. The square shape and hexagonal shape microlens with customized distribution are realized and characterized. The results indicate that the proposed DMSL can be a significant role in the microfabrication techniques for manufacturing functional microstructures array.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...