Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Biochem Biophys ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096465

RESUMEN

This study aimed to investigate the detrimental impact of cigarettes on lung cells and the potential effects of astragaloside IV on lung epithelial cell oxidative stress and pyroptosis. The research utilized cigarette smoke extract (CSE) to stimulate lung epithelial cells BEAS-2B, assessed cytotoxicity using the CCK-8 method, and measured changes in reactive oxygen species (ROS) and mitochondrial membrane potential with a probe method. Additionally, Seahorse XF24 was employed to analyze the impact of CSE on mitochondria in lung epithelial cells. Furthermore, LPS and cigarette combination-treated mice were created, alveolar damage was evaluated using HE staining, and changes in the key protein GSDMD of pyroptosis were detected using western blot (WB). The study also utilized the CCK-8 method to assess the potential toxic effects of astragaloside IV on lung epithelial cells, and the probe method to monitor changes in ROS and mitochondrial membrane potential. WB analysis was conducted to observe protein alterations in the TXNIP/NLRP3/GSDMD pathway. CSE concentration-dependently reduced cell activity, increased cellular ROS levels, and decreased mitochondrial membrane potential. CSE also decreases basal respiratory capacity, respiratory reserve capacity, and ATP production levels in cells. In LPS and cigarette combination-treated mice, cigarette smoke caused the alveolar septum to break and alveoli to enlarge, while increasing the expression of pyroptosis-related protein GSDMD. Astragaloside IV did not show significant cytotoxic effects within 48 h of treatment and could reduce CSE-induced ROS levels while increasing mitochondrial membrane potential. WB results indicated that astragaloside IV reduced the activation of the TXNIP/NLRP3/GSDMD signaling pathway in lung epithelial cells exposed to CSE. Our study demonstrates that CSE induces oxidative stress and impairs mitochondrial function in pulmonary epithelial cells, while astragaloside IV can potentially reverse these effects by inhibiting the TXNIP-NLRP3-GSDMD signaling pathway, thereby mitigating CSE-induced pulmonary disease and epithelial cell pyroptosis.

2.
Virulence ; 15(1): 2367652, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38912723

RESUMEN

ß-N-acetylglucosaminidase (NagZ), a cytosolic glucosaminidase, plays a pivotal role in peptidoglycan recycling. Previous research demonstrated that NagZ knockout significantly eradicated AmpC-dependent ß-lactam resistance in Enterobacter cloacae. However, NagZ's role in the virulence of E. cloacae remains unclear. Our study, incorporating data on mouse and Galleria mellonella larval mortality rates, inflammation markers, and histopathological examinations, revealed a substantial reduction in the virulence of E. cloacae following NagZ knockout. Transcriptome sequencing uncovered differential gene expression between NagZ knockout and wild-type strains, particularly in nucleotide metabolism pathways. Further investigation demonstrated that NagZ deletion led to a significant increase in cyclic diguanosine monophosphate (c-di-GMP) levels. Additionally, transcriptome sequencing and RT-qPCR confirmed significant differences in the expression of ECL_03795, a gene with an unknown function but speculated to be involved in c-di-GMP metabolism due to its EAL domain known for phosphodiesterase activity. Interestingly, in ECL_03795 knockout strains, a notable reduction in the virulence was observed, and virulence was rescued upon complementation with ECL_03795. Consequently, our study suggests that NagZ's function on virulence is partially mediated through the ECL_03795→c-di-GMP pathway, providing insight into the development of novel therapies and strongly supporting the interest in creating highly efficient NagZ inhibitors.


Asunto(s)
Enterobacter cloacae , Animales , Virulencia , Ratones , Enterobacter cloacae/genética , Enterobacter cloacae/patogenicidad , Enterobacter cloacae/efectos de los fármacos , Larva/microbiología , Mariposas Nocturnas/microbiología , Acetilglucosaminidasa/genética , Acetilglucosaminidasa/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Infecciones por Enterobacteriaceae/microbiología , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes
3.
Front Cell Infect Microbiol ; 14: 1301089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435308

RESUMEN

Bacteriophages (phages) represent promising alternative treatments against multidrug-resistant Acinetobacter baumannii (MDRAB) infections. The application of phages as antibacterial agents is limited by their generally narrow host ranges, so changing or expanding the host ranges of phages is beneficial for phage therapy. Multiple studies have identified that phage tail fiber protein mediates the recognition and binding to the host as receptor binding protein in phage infection. However, the tail tubular-dependent host specificity of phages has not been studied well. In this study, we isolated and characterized a novel lytic phage, vB_Ab4_Hep4, specifically infecting MDRAB strains. Meanwhile, we identified a spontaneous mutant of the phage, vB_Ab4_Hep4-M, which revealed an expanded host range compared to the wild-type phage. A single mutation of G to C was detected in the gene encoding the phage tail tubular protein B and thus resulted in an aspartate to histidine change. We further demonstrated that the host range expansion of the phage mutant is driven by the spontaneous mutation of guanine to cytosine using expressed tail tubular protein B. Moreover, we established that the bacterial capsule is the receptor for phage Abp4 and Abp4-M by identifying mutant genes in phage-resistant strains. In conclusion, our study provided a detailed description of phage vB_Ab4_Hep4 and revealed the tail tubular-dependent host specificity in A. baumannii phages, which may provide new insights into extending the host ranges of phages by gene-modifying tail tubular proteins.


Asunto(s)
Acinetobacter baumannii , Bacteriófagos , Mutación , Acinetobacter baumannii/genética , Antibacterianos , Bacteriófagos/genética , Especificidad del Huésped
4.
Front Mol Biosci ; 10: 1270101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37753371

RESUMEN

Based on the development of nucleic acid therapeutic drugs, DNAzymes obtained through in vitro selection technology in 1994 are gradually being sought. DNAzymes are single-stranded DNA molecules with catalytic function, which specifically cleave RNA under the action of metal ions. Various in vivo and in vitro models have recently demonstrated that DNAzymes can target related genes in cancer, cardiovascular disease, bacterial and viral infection, and central nervous system disease. Compared with other nucleic acid therapy drugs, DNAzymes have gained more attention due to their excellent cutting efficiency, high stability, and low cost. Here, We first briefly reviewed the development and characteristics of DNAzymes, then discussed disease-targeting inhibition model of DNAzymes, hoping to provide new insights and ways for disease treatment. Finally, DNAzymes were still subject to some restrictions in practical applications, including low cell uptake efficiency, nuclease degradation and interference from other biological matrices. We discussed the latest delivery strategy of DNAzymes, among which lipid nanoparticles have recently received widespread attention due to the successful delivery of the COVID-19 mRNA vaccine, which provides the possibility for the subsequent clinical application of DNAzymes. In addition, the future development of DNAzymes was prospected.

5.
Front Cell Infect Microbiol ; 13: 1140548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424777

RESUMEN

Background: The impact of COVID-19 on the world is still ongoing, and it is currently under regular management. Although most infected people have flu-like symptoms and can cure themselves, coexisting pathogens in COVID-19 patients should not be taken lightly. The present study sought to investigate the coexisting pathogens in SARS-CoV-2 infected patients and identify the variety and abundance of dangerous microbes to guide treatment strategies with a better understanding of the untested factors. Methods: We extracted total DNA and RNA in COVID-19 patient specimens from nasopharyngeal swabs to construct a metagenomic library and utilize Next Generation Sequencing (NGS) to discover chief bacteria, fungi, and viruses in the body of patients. High-throughput sequencing data from Illumina Hiseq 4000 were analyzed using Krona taxonomic methodology for species diversity. Results: We studied 56 samples to detect SARS-CoV-2 and other pathogens and analyzed the species diversity and community composition of these samples after sequencing. Our results showed some threatening pathogens such as Mycoplasma pneumoniae, Klebsiella pneumoniae, Streptococcus pneumoniae, and some previously reported pathogens. SARS-CoV-2 combined with bacterial infection is more common. The results of heat map analysis showed that the abundance of bacteria was mostly more than 1000 and that of viruses was generally less than 500. The pathogens most likely to cause SARS-CoV-2 coinfection or superinfection include Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Klebsiella pneumoniae, and Human gammaherpesvirus 4. Conclusions: The current coinfection and superinfection status is not optimistic. Bacteria are the major threat group that increases the risk of complications and death in COVID-19 patients and attention should be paid to the use and control of antibiotics. Our study investigated the main types of respiratory pathogens prone to coexisting or superinfection in COVID-19 patients, which is valuable for identifying and treating SARS-CoV-2.


Asunto(s)
COVID-19 , Coinfección , Sobreinfección , Virus , Humanos , SARS-CoV-2/genética , Coinfección/microbiología , Virus/genética , Bacterias/genética , Streptococcus pneumoniae , Klebsiella pneumoniae , Nasofaringe/microbiología
6.
Virus Genes ; 59(5): 763-774, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37422898

RESUMEN

Enterococcus faecium has been classified as a "high priority" pathogen by the World Health Organization. Enterococcus faecium has rapidly evolved as a global nosocomial pathogen with adaptation to the nosocomial environment and the accumulation of resistance to multiple antibiotics. Phage therapy is considered a promising strategy against difficult-to-treat infections and antimicrobial resistance. In this study, we isolated and characterized a novel virulent bacteriophage, vB_Efm_LG62, that specifically infects multidrug-resistant E. faecium. Morphological observations suggested that the phage has siphovirus morphology, with an optimal multiplicity of infection of 0.001. One-step growth tests revealed that its latent growth was at 20 min, with a burst size of 101 PFU/cell. Phage vB_Efm_LG62 was verified to have a double-stranded genome of 42,236 bp (35.21% GC content), containing 66 predicted coding sequences as determined by whole genomic sequencing. No genes were predicted to have functions associated with virulence factors or antibiotic resistance, indicating that the phage vB_Efm_LG62 has good therapeutic potential. Our isolation and characterization of this highly efficient phage aids in expanding our knowledge of E. faecium-targeting phages, and provides additional options for phage cocktail therapy.


Asunto(s)
Bacteriófagos , Infección Hospitalaria , Enterococcus faecium , Humanos , Enterococcus faecium/genética , Genoma Viral , Secuenciación Completa del Genoma , Infección Hospitalaria/genética
7.
Phytomedicine ; 119: 154975, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37517171

RESUMEN

BACKGROUND: Mitochondria is critic to tubulopathy, especially in diabetic kidney disease (DKD). Huangkui capsule (HKC; a new ethanol extract from the dried corolla of Abelmoschus manihot) has significant clinical effect on DKD. Previous studies have shown that HKC protects kidney by regulating mitochondrial function, but its mechanism is still unclear. The latest research found that the stimulator of interferon genes (STING1) signal pathway is closely related to mitophagy. However, whether HKC induces mitophagy through targeting STING1/PTEN-Induced putative kinase (PINK1) in renal tubular remains elusive. OBJECTIVE: This study aims to clarify the therapeutic effect of HKC on renal tubular mitophagy in DKD and its potential mechanism in vivo and in vitro. METHODS: Forty male C57BL/6 mice were randomly divided into 5 groups: CON group, DKD group, HKC-L (1.0 g/kg/day, by gavage), HKC-H (2.0 g/kg/day), and LST group. Diabetes model was induced by high-fat diet (HFD) combined with intraperitoneal injection of Streptozotocin (STZ). LST (losartan) is used as a positive control drug. Then, the glomeruli, renal tubular lesions, mitochondrial morphology and function of renal tubular cells and mitophagy levels were detected in mice. In addition, a high glucose injury model was established using HK2 human renal tubular cells. Pretreate HK2 cells with HKC or LST and detect mitochondrial function, mitophagy level, and autophagic flux. In addition, small interfering RNAs (siRNAs) of STING1 and PINK1 and overexpressing pcDNA3.1 plasmids were transfected into HK-2 cells to validate the mitophagy mechanism regulated by STING1/PINK1 signaling. RESULTS: The ratio of urinary albumin to creatinine (ACR), fasting blood glucose, body weight in the early DKD mice model was increased, with damage to the glomerulus and renal tubules, mitochondrial structure and dysfunction in the renal tubules, and inhibition of STING1/PINK1 mediated mitophagy. Although the fasting blood glucose, body weight and serum creatinine levels were hardly ameliated, high dose HKC (2.0 g/kg/day) treatment significantly reduced ACR in the DKD mice to some extent, improved renal tubular injury, accurately upregulated STING1/PINK1 signaling mediated mitophagy levels, improved autophagic flux, and restored healthy mitochondrial pools. In vitro, an increase in mitochondrial fragments, fusion to fission, ROS and apoptosis, and a decrease in respiratory function, mtDNA, and membrane potential were observed in HK2 cells exposed to high glucose. HKC treatment significantly protected mitochondrial dynamics and function, which is consistent with in vivo results. Further research has shown that HKC can increase the level of mitophagy mediated by STING1/PINK1 in HK2 cells. CONCLUSIONS: Our results suggest that HKC ameliorates renal tubulopathy in DKD and induces mitophagy partly through the up-regulation of the STING1/PINK1 pathway. These findings may provide an innovative therapeutic basis for DKD treatment.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratas , Masculino , Ratones , Humanos , Animales , Nefropatías Diabéticas/metabolismo , Mitofagia , Glucemia , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Transducción de Señal , Proteínas Quinasas/metabolismo , Peso Corporal
8.
Microbiol Spectr ; 11(3): e0438422, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37022197

RESUMEN

The spread of multidrug resistant and hypervirulent Klebsiella pneumoniae has recently increased. Phages have been considered alternatives for treating infections caused by tenacious pathogens. Our study describes a novel lytic Klebsiella phage, hvKpP3, and we obtained spontaneous mutants, hvKpP3R and hvKpP3R15, of hvKpLS8 strain that showing strong resistance to the lytic phage hvKpP3. Sequencing analysis showed that nucleotide-deletion mutations of the glycosyltransferase gene (GT) and wcaJ genes, located in the lipopolysaccharide (LPS) gene cluster and the capsular polysaccharide (CPS) gene cluster, respectively, led to phage resistance. The wcaJ mutation confers the inhibition of phage adsorption by affecting the synthesis of hvKpP3R15 capsular polysaccharide, indicating that the capsule is the main adsorption receptor for bacteriophage hvKpP3. Interestingly, the phage-resistant mutant hvKpP3R has a loss-of-function mutation in GT, which is responsible for lipopolysaccharide biosynthesis. This results in the loss of high-molecular weight lipopolysaccharide (HMW-LPS), and alteration of the lipopolysaccharide structure of the bacterial cell wall confers resistance to phages. In conclusion, our study provides a detailed description of phage hvKpP3 and provides new insights into phage resistance in K. pneumoniae. IMPORTANCE Multidrug-resistant (MDR) Klebsiella pneumoniae strains pose a particular threat to human health. Therefore, it is very important for us to isolate phage and overcome phage resistance. In this study, we isolated a novel phage belonging to the Myoviridae family, hvKpP3, that exhibited high lytic activity against K2 hypervirulent K. pneumoniae. We demonstrated the excellent stability of phage hvKpP3 through in vitro and in vivo experiments, indicating its potential as a candidate for future clinical phage therapy. Furthermore, we identified that loss of function in the glycotransferase gene (GT) caused the failure of HMW-LPS synthesis, leading to phage resistance, which provides new insights into phage resistance in K. pneumoniae.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Humanos , Bacteriófagos/fisiología , Lipopolisacáridos , Klebsiella pneumoniae , Peso Molecular , Myoviridae , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología
9.
Front Cell Infect Microbiol ; 13: 1141274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960047

RESUMEN

Introduction: With the emergence of SARS-CoV-2 mutant strains, especially the epidemic of Omicron, it continues to evolve to strengthen immune evasion. Omicron BQ. 1 and XBB pose a serious threat to the current COVID-19 vaccine (including bivalent mRNA vaccine for mutant strains) and COVID-19-positive survivors, and all current therapeutic monoclonal antibodies are ineffective against them. Older people, those with multimorbidity, and those with specific underlying health conditions remain at increased risk of COVID-19 hospitalization and death after the initial vaccine booster. However, small-molecule drugs for conserved targets remain effective and urgently needed. Methods: The non-structural protein of SARS-CoV-2 non-structural protein 1(Nsp1) can bind to the host 40S ribosomal subunit and activate the nuclease to hydrolyze the host RNA, while the viral RNA is unaffected, thus hijacking the host system. First, the present study analyzed mutations in the Nsp1 protein and then constructed a maximum-likelihood phylogenetic tree. A virtual drug screening method based on the Nsp1 structure (Protein Data Bank ID: 7K5I) was constructed, 7495 compounds from three databases were collected for molecular docking and virtual screening, and the binding free energy was calculated by the MM/GBSA method. Results: Our study shows that Nsp1 is relatively conserved and can be used as a comparatively fixed drug target and that therapies against Nsp1 will target all of these variants. Golvatinib, Gliquidone, and Dihydroergotamine were superior to other compounds in the crystal structure of binding conformation and free energy. All effectively interfered with Nsp1 binding to 40S protein, confirming the potential inhibitory effect of these three compounds on SARS-CoV-2. Discussion: In particular, Golwatinib provides a candidate for treatment and prophylaxis in elderly patients with Omicjon, suggesting further evaluation of the anti-SARS-CoV-2 activity of these compounds in cell culture. Further studies are needed to determine the utility of this finding through prospective clinical trials and identify other meaningful drug combinations.


Asunto(s)
COVID-19 , Anciano , Humanos , Vacunas contra la COVID-19 , Simulación del Acoplamiento Molecular , Filogenia , Estudios Prospectivos , SARS-CoV-2/genética , Antivirales/farmacología , Antivirales/uso terapéutico , Bases de Datos de Proteínas , Sistemas de Liberación de Medicamentos
10.
Eur J Clin Microbiol Infect Dis ; 42(1): 23-31, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36322255

RESUMEN

Carbapenem-resistant Klebsiella pneumoniae are distributed worldwide. This study aimed to characterize a hypervirulent tigecycline-resistant and carbapenem-resistant Klebsiella pneumoniae strain, XJ-K2, collected from a patient's blood. We tested antimicrobial susceptibility, virulence, and whole-genome sequencing (WGS) on strain XJ-K2. WGS data were used to identify virulence and resistance genes and to perform multilocus sequence typing (MLST) and phylogenetic analysis. Three novel plasmids, including a pLVPK-like virulence plasmid (pXJ-K2-p1) and two multiple resistance plasmids (pXJ-K2-KPC-2 and pXJ-K2-p3), were discovered in strain XJ-K2. The IncFII(pCRY) plasmid pXJ-K2-p3 carried the dfrA14, sul2, qnrS1, blaLAP-2, and tet(A) resistance genes. The IncFII(pHN7A8)/IncR plasmid pXJ-K2-KPC-2 also carried a range of resistance elements, containing rmtB, blaKPC-2, blaTEM-1, blaCTX-M-65, and fosA3. MLST analysis revealed that strain XJ-K2 belonged to sequence type 11 (ST11). Seven complete phage sequences and many virulence genes were found in strain XJ-K2. Meanwhile, antimicrobial susceptibility tests and G. mellonella larval infection models confirmed the extensively drug resistance (XDR) and hypervirulence of KJ-K2. To our knowledge, this is the first observation and description of the ST11 hypervirulent tigecycline- and carbapenem-resistant K. pneumoniae strain co-carrying blaKPC-2 and the tet(A) in a patient's blood in China. Further investigation is needed to understand the resistance and virulence mechanisms of this significant hypervirulent tigecycline- and carbapenem-resistant strain.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Klebsiella , Humanos , Tigeciclina/farmacología , Klebsiella pneumoniae , Antibacterianos/farmacología , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Tipificación de Secuencias Multilocus , Filogenia , beta-Lactamasas/genética , Carbapenémicos/farmacología , Plásmidos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética
11.
Microbiol Spectr ; 10(5): e0195722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36047802

RESUMEN

Acinetobacter baumannii is an important pathogenic bacterium with multidrug resistance which causes infections with high mortality rates. In-depth genetic analysis of A. baumannii virulence and drug-resistant genes is highly desirable. In this study, we utilized the conserved pyrF-flanking fragment to rapidly generate uracil auxotrophy hosts with pyrF deleted in model and clinical A. baumannii strains and then introduced the pyrF gene as the selectable and counterselectable marker to establish a series of gene manipulation vectors. For gene deletion with the suicide pyrF-based plasmid, the second-crossover colonies screened with the pyrF/5-fluoroorotic acid (5-FOA) system were obtained more quickly and efficiently than those screened with the sacB/sucrose system. By using the replicative plasmid, the recognized protospacer-adjacent motif (PAM) bias for type I-F CRISPR was experimentally revealed in A. baumannii AYE. Interestingly, interference recognized only the PAM-CC sequence, whereas adaptation priming tolerates 4 PAM sequences. Furthermore, we also performed a rapid and extensive modification of the I-F CRISPR-Cas elements and revealed that the role of double-nucleotide sequence mutants at the end of the repeat could be critical during both CRISPR interference and priming; we also found strong biases for A and demonstrated that adaptation could tolerate certain sequence and size variations of the leader in A. baumannii. In conclusion, this pyrF-based genetic manipulation system was readily applicable and efficient for exploring the genetic characteristics of A. baumannii. IMPORTANCE In this study, we developed the widely applicable and efficient pyrF-based selection and counterselection system in A. baumannii for gene manipulation. In most cases, this pyrF/5-FOA genetic manipulation system was very effective and enabled us to obtain marker-free mutants in a very short period of time. Utilizing this system and the separate mechanism of interference and/or primed adaptation, our experiments revealed some recognition mechanism differences for the key DNA elements of PAM, leader, and repeat in the priming adaptation process of the I-F CRISPR-Cas systems of A. baumannii, which provided some new and original insights for the study of the molecular mechanisms of these processes and laid a foundation for further studies.


Asunto(s)
Acinetobacter baumannii , Sistemas CRISPR-Cas , Humanos , Acinetobacter baumannii/genética , Plásmidos/genética , ADN , Sacarosa
12.
Exp Ther Med ; 23(1): 11, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34815763

RESUMEN

Pulmonary emphysema is one of the most important pathological manifestations of chronic obstructive pulmonary disease and is commonly associated with cigarette smoking. Previous studies have indicated that necroptosis, a novel non-apoptotic cell death mechanism associated with inflammation and oxidative stress, may contribute to the development of pulmonary emphysema. Theaflavin-3,3'-digallate (TF-3), one of the theaflavins present in black tea, is known to possess several bioactive properties. In the present study, it was demonstrated that TF-3 significantly reduced the generation of reactive oxygen species and the mRNA expression levels of TNF-α, IL-1ß and IL-6 in CSE-treated human normal lung epithelial BEAS-2B cells. To further explore the role of TF-3 in necroptosis, the necroptotic rates of BEAS-2B cells were examined via flow cytometry and immunofluorescence assays. The results demonstrated that TF-3 may suppress necroptosis in CSE-treated BEAS-2B cells. Furthermore, it was determined that TF-3 significantly inhibited the CSE-induced phosphorylation of p38 MAPK, receptor-interacting serine/threonine-protein kinase three (RIPK3) and mixed lineage kinase domain-like (MLKL) in BEAS-2B cells. Another experiment demonstrated that a pharmacological inhibitor of the p38 MAPK pathway, SB203580, significantly reduced the protein expression levels of phosphorylated (p)-RIPK3 and phosphorylated (p-)MLKL, which indicated that TF-3 suppressed necroptosis via the p38 MAPK/RIPK3/MLKL signaling pathways. In vivo, it was observed that TF-3 treatment significantly attenuated morphological lung injury in mice with CSE-induced emphysema. Moreover, TF-3 significantly reduced the levels of proinflammatory cytokines, TNF-α and IL-1ß and significantly enhanced the antioxidant capacity of the lung tissues in mice with emphysema. TF-3 also significantly inhibited the levels of p-RIPK3 and p-MLKL in the lungs of mice with emphysema. Therefore, the present study indicated that TF-3 may attenuate CSE-induced emphysema in mice by inhibiting necroptosis.

13.
Front Microbiol ; 12: 739319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690983

RESUMEN

Hypervirulent Klebsiella pneumoniae (hvKp), one of the major community-acquired pathogens, can cause invasive infections such as liver abscess. In recent years, bacteriophages have been used in the treatment of K. pneumoniae, but the characteristics of the phage-resistant bacteria produced in the process of phage therapy need to be evaluated. In this study, two Podoviridae phages, hvKpP1 and hvKpP2, were isolated and characterized. In vitro and in vivo experiments demonstrated that the virulence of the resistant bacteria was significantly reduced compared with that of the wild type. Comparative genomic analysis of monoclonal sequencing showed that nucleotide deletion mutations of wzc and wcaJ genes led to phage resistance, and the electron microscopy and mucoviscosity results showed that mutations led to the loss of the capsule. Meanwhile, animal assay indicated that loss of capsule reduced the virulence of hvKp. These findings contribute to a better understanding of bacteriophage therapy, which not only can kill bacteria directly but also can reduce the virulence of bacteria by phage screening.

14.
Front Immunol ; 12: 692286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305926

RESUMEN

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by diffuse inflammation of the lung parenchyma and refractory hypoxemia. Butorphanol is commonly used clinically for perioperative pain relief, but whether butorphanol can regulate LPS-induced alveolar macrophage polarization is unclear. In this study, we observed that butorphanol markedly attenuated sepsis-induced lung tissue injury and mortality in mice. Moreover, butorphanol also decreased the expression of M1 phenotype markers (TNF-α, IL-6, IL-1ß and iNOS) and enhanced the expression of M2 marker (CD206) in alveolar macrophages in the bronchoalveolar lavage fluid (BALF) of LPS-stimulated mice. Butorphanol administration reduced LPS-induced numbers of proinflammatory (M1) macrophages and increased numbers of anti-inflammatory (M2) macrophages in the lungs of mice. Furthermore, we found that butorphanol-mediated suppression of the LPS-induced increases in M1 phenotype marker expression (TNF-α, IL-6, IL-1ß and iNOS) in bone marrow-derived macrophages (BMDMs), and this effect was reversed by κ-opioid receptor (KOR) antagonists. Moreover, butorphanol inhibited the interaction of TLR4 with MyD88 and further suppressed NF-κB and MAPKs activation. In addition, butorphanol prevented the Toll/IL-1 receptor domain-containing adaptor inducing IFN-ß (TRIF)-mediated IFN signaling pathway. These effects were ameliorated by KOR antagonists. Thus, butorphanol may promote macrophage polarization from a proinflammatory to an anti-inflammatory phenotype secondary to the inhibition of NF-κB, MAPKs, and the TRIF-mediated IFN signaling pathway through κ receptors.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Analgésicos Opioides/farmacología , Antiinflamatorios/farmacología , Butorfanol/farmacología , Pulmón/efectos de los fármacos , Macrófagos/efectos de los fármacos , Neumonía/prevención & control , Receptores Opioides kappa/antagonistas & inhibidores , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fenotipo , Neumonía/inmunología , Neumonía/metabolismo , Receptores Opioides kappa/metabolismo , Transducción de Señal
17.
Biochem Biophys Res Commun ; 525(3): 733-739, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32143825

RESUMEN

Cigarette smoke is one of major risk factors in the pathogenesis of chronic obstructive pulmonary disease (COPD). It is generally believed that cigarette smoke induces mitochondrial damage in the alveolar epithelial cells to contribute to COPD. However, the exact molecular mechanism remains unknown for the mitochondrial damage. In this study, cigarette smoke extract (CSE) was found to induce the mitochondrial membrane permeability (MMP), which promoted proton leakage leading to the reduction in mitochondrial potential and ATP production. ANT in the mitochondrial inner membrane was activated by CSE for the alteration of MMP. The activation was observed without an alteration in the protein level of ANT. Inhibition of the ANT activity with ADP or bongkrekic acid prevented the MMP alteration and potential drop upon CSE exposure. The ANT activation was observed with a rise in ROS production, inhibition of the mitochondrial respiration, decrease in the complex III protein and rise in mitophagy activity. The results suggest that ANT may mediate the toxic effect of cigarette smoke on mitochondria and control of ANT activity is a potential strategy in intervention of the toxicity.


Asunto(s)
Translocador 1 del Nucleótido Adenina/metabolismo , Fumar Cigarrillos/efectos adversos , Células Epiteliales/metabolismo , Pulmón/patología , Membranas Mitocondriales/metabolismo , Células A549 , Adenosina Trifosfato/metabolismo , Animales , Respiración de la Célula , Complejo III de Transporte de Electrones/metabolismo , Humanos , Masculino , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitofagia , Modelos Biológicos , Permeabilidad , Enfermedad Pulmonar Obstructiva Crónica/patología
18.
Diagn Microbiol Infect Dis ; 84(3): 230-1, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26740313

RESUMEN

A total of 101 Acinetobacter baumannii isolates were collected to determine the mechanisms of quinolone resistance and investigate the occurrence of carbapenem and high-level aminoglycoside resistance genes among quinolone-resistant strains. Among 77 quinolone-resistant A. baumannii harbored mutations of gyrA and parC, 41 isolates, which belonged to European clone II, had resistance to aminoglycosides and carbapenems due to the expression of armA and acquisition of blaOXA-23. Most of sequence type belonged to clonal complex 92. These results suggested hospital dissemination of multidrug-resistant A. baumannii carrying blaOXA-23, armA, and mutations of quinolone resistance-determining regions in western China.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana , Quinolonas/farmacología , beta-Lactamasas/genética , Acinetobacter baumannii/clasificación , Acinetobacter baumannii/aislamiento & purificación , Antibacterianos/farmacología , China , Infección Hospitalaria , Farmacorresistencia Bacteriana Múltiple , Hospitales Universitarios , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Mutación , Filogenia
19.
Exp Ther Med ; 12(6): 3642-3652, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28101158

RESUMEN

The prevalence of aminoglycoside resistant enzymes has previously been reported and extended-spectrum ß-lactamase among Acinetobacter baumannii. To track the risk of multidrug-resistant A. baumannii, the present study aimed to determine the prevalence of carbapenemases in high-level aminoglycoside resistant A. baumannii over two years. A total of 118 strains of A. baumannii were consecutively collected in the First Affiliated Hospital of Chengdu Medical College, Chengdu, China. These isolates were investigated on the genetic basis of their resistance to aminoglycosides. The results showed that 75 (63.56%) isolates were high-level resistant to aminoglycosides, including gentamicin and amikacin (minimum inhibitory concentration, ≥256 µg/ml). Aminoglycoside-resistant genes ant(2″)-Ia, aac(6')-Ib, aph(3')-Ia, aac(3)-Ia, aac(3)-IIa, armA, rmtA, rmtB, rmtC, rmtD, rmtE, rmtF, rmtG, rmtH and npmA, and carbapenem-resistant genes blaOXA-23, blaOXA-24, blaOXA-51, blaOXA-58, blaSIM, blaIMP, blaNDM-1 and blaKPC, were analyzed using polymerase chain reaction. The positive rate of ant(2″)-Ia, aac(6')-Ib, aph(3')-Ia, aac(3)-Ia and aac(3)-IIa was 66.95, 69.49, 42.37, 39.83 and 14.41%, respectively. armA was present in 72.0% (54/75) of A. baumannii isolates with high-level resistance to aminoglycosides. The remaining nine 16S ribosomal RNA methlyase genes (rmtA, rmtB, rmtC, rmtD, rmtE, rmtF, rmtG, rmtH and npmA) and aminoglycoside-modifying enzyme gene aac(6')-Ib-cr were not detected. Among the 54 armA-positive isolates, the prevalence of the carbapenem resistant blaOXA-23 and blaOXA-51 genes was 79.63 and 100%, respectively. armA, ant(2″)-Ia and aac(6')-Ib were positive in 43 isolates. The results of multilocus sequence typing revealed 31 sequence types (STs) in all clinical strains. Among these STs, the high-level aminoglycoside-resistant A. baumannii ST92, which mostly harbored blaOXA-23, was the predominant clone (29/75). In conclusion, A. baumannii harboring carbapenemases and aminoglycoside-resistant enzymes are extremely prevalent in western China, emphasizing the need to adopt surveillance programs to solve the therapeutic challenges that this presents.

20.
Front Microbiol ; 6: 910, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26388854

RESUMEN

Carbapenem-resistant Acinetobacter baumannii (CRAB) presents a serious therapeutic and infection control challenge. In this study, we investigated the epidemiological and molecular differences of CRAB and the threatening factors for contributing to increased CRAB infections at a hospital in western China. A total of 110 clinical isolates of A. baumannii, collected in a recent 2-year period, were tested for carbapenem antibiotic susceptibility, followed by a molecular analysis of carbapenemase genes. Genetic relatedness of the isolates was characterized by multilocus sequence typing. Sixty-seven of the 110 isolates (60.9%) were resistant to carbapenems, 80.60% (54/67) of which carried the bla OXA-23 gene. Most of these CRAB isolates (77.62%) were classified as clone complex 92 (CC92), and sequence type (ST) 92 was the most prevalent STs, followed by ST195, ST136, ST843, and ST75. One CRAB isolate of ST195 harbored plasmid pAB52 from a Chinese patient without travel history. This plasmid contains toxin-antitoxin elements related to adaptation for growth, which might have emerged as a common vehicle indirectly mediating the spread of OXA-23 in CRAB. Thus, CC92 A. baumannii carrying OXA-23 is a major drug-resistant strain spreading in China. Our findings indicate that rational application of antibiotics is indispensable for minimizing widespread of drug resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...