Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(16): e36376, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39258214

RESUMEN

Quantitative Magnetic Resonance Imaging (qMRI) offers precise measurements of the relaxation characteristics of microstructures, representing a cutting-edge method in non-destructive fruit analysis. This study aims to visualize information on changes in moisture status and distribution at the subcellular level of winter jujube. The 0.5 T nuclear magnetic imaging equipment was utilized to rapidly, non-invasively, and accurately capture the internal relaxation status of the sample with multiple-echo-imaging. By examining the signal and noise data, a simulated dataset was developed to tackle the optimization challenge of estimating parameters for the discrete relaxation model from the multiple-echo-imaging data, especially under conditions of low signal-to-noise ratio (SNR) and in the context of heteroscedastic noise. An optimal weighting factor and the T2NR truncation model have been identified to establish an effective experimental inversion strategy. Subsequently, multiple-echo-imaging can rapidly and stably yielded voxel-level maps under conditions of low signal-to-noise ratio. Utilizing this experimental approach, data from winter jujube was collected and analyzed, facilitating an exploration of water activity (T2 mapping) and associated water content (A2 mapping). Through analyzing winter jujube fruits across two maturity stages, this study elucidates the role of precise quantification and voxel-wise visualization in moisture status detection. The methodology presents an innovative approach for assessing internal moisture distribution in fruits.

2.
J Agric Food Chem ; 72(35): 19413-19423, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39178398

RESUMEN

Chicken is the main source of protein for humans in most parts of the world. However, excessive fat deposition in chickens has become a serious problem. This adversely affects the growth of chickens and causes economic losses. Fat formation mainly occurs through preadipocyte differentiation, and excessive fat deposition results from the accumulation of preadipocytes after differentiation. Our previous studies have found that the connective tissue growth factor (CTGF) may be an important candidate gene for fat deposition. However, its function and mechanism in preadipocyte differentiation are still unclear. In this study, the RT-qPCR and Western blot results showed that the expression of CTGF mRNA and protein in the abdominal adipose of lean chickens was significantly higher than that of fat chickens. Therefore, we studied the function and mechanism of the CTGF in the differentiation of chicken preadipocytes. Functionally, the CTGF inhibited the differentiation of chicken preadipocytes. Mechanistically, the CTGF mediated the TGFß1/Smad3 signaling pathway, thereby inhibiting the differentiation of chicken preadipocytes. In addition, we used the unique molecular identifier (UMI) RNA-Seq technology to detect genes that can be regulated by the CTGF in the whole genome. Through transcriptome data analysis, we selected actin gamma 2 (ACTG2) as a candidate gene. Regarding the function of the ACTG2 gene, we found that it inhibited the differentiation of chicken preadipocytes. Furthermore, we found that the CTGF can inhibit the differentiation of preadipocytes through the ACTG2 gene. In summary, this study found the CTGF as a new negative regulator of chicken preadipocyte differentiation. The results of this study help improve the understanding of the molecular genetic mechanism of chicken adipose tissue growth and development and also have reference significance for the study of human obesity.


Asunto(s)
Adipocitos , Diferenciación Celular , Pollos , Factor de Crecimiento del Tejido Conjuntivo , Transducción de Señal , Proteína smad3 , Animales , Pollos/genética , Pollos/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Adipocitos/metabolismo , Adipocitos/citología , Proteína smad3/metabolismo , Proteína smad3/genética , Adipogénesis , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética
3.
Animals (Basel) ; 14(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38275813

RESUMEN

As an excellent chicken breed found in a high-altitude zone of northern China, Lindian chickens are characterized by good egg and meat production, strong adaptability, cold tolerance, rough feeding resistance, excellent egg quality, and delicious meat quality. To facilitate the exploitation of the unique qualities of the Lindian chicken, the varying patterns and correlations of various body size and carcass traits of 3-22-week-old Lindian chickens were analyzed in this study. The optimal growth model of these traits was determined by growth curve fitting analysis. The results showed that most traits of Lindian chickens increased steadily with increasing age, and most of them increased rapidly before 10 weeks of age. In addition, the inflection point age of each trait was predicted to be between 4 and 10 weeks. Furthermore, this study revealed that body size traits were closely related to carcass traits in Lindian chickens. In summary, Lindian chickens are in a rapid growth stage before the age of 10 weeks, and better slaughter performance can be achieved through good feeding management during this stage. The reproductive traits and muscles are the main developmental focus after the age of 19 weeks, so it is important to adequately meet their energy requirements for subsequent good breeding performance.

4.
Poult Sci ; 103(1): 103250, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992620

RESUMEN

The deposition of high levels of fat in broiler breeder hens can have a profound impact on follicular development and laying performance. This study was formulated with the goal of comparing egg production and follicular development characteristics at different laying stages in the Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF). The egg production was analyzed using the birds from the 19th to 24th generations of NEAUHLF; the follicular development characteristics were analyzed by hematoxylin-eosin staining and quantitative real-time polymerase chain reaction using the birds from the 24th generation of NEAUHLF. The results showed that the age at first egg of lean hens was significantly earlier than that of fat hens in this study. While no significant differences in total egg output from the first egg to 50 wk of age were noted when comparing these 2 chicken lines, lean hens laid more eggs from the first egg to 35 wk of age relative to fat hens, whereas fat hens laid more eggs from wk 36 to 42 and 43 to 50 relative to their lean counterparts. No differences in ovarian morphology and small yellow follicle (SYF) histological characteristics were noted when comparing these 2 chicken lines at 27 wk of age. At 35 and 52 wk of age, however, lean hens exhibited significantly lower ovarian weight, ovarian proportion values, numbers of hierarchical follicles, hierarchical follicle weight, and SYF granulosa layer thickness as compared to fat hens, together with a significant increase in the number of prehierarchical follicles relative to those in fat hens. Gene expression analyses suggested that follicle selection was impaired in the fat hens in the early laying stage, whereas both follicle selection and maturation were impaired in the lean hens in the middle and late laying stages. Overall, these data highlight that fat deposition in broiler hens can have a range of effects on follicular development and egg production that are laying stage-dependent.


Asunto(s)
Pollos , Óvulo , Humanos , Animales , Femenino , Pollos/genética , Folículo Ovárico , Ovario/anatomía & histología , Oviposición
5.
Food Chem ; 438: 137631, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37983998

RESUMEN

The development of biosensors capable of assessing umami intensity has elicited significant attention. However, the detection range of these biosensors is constrained by the sensing components and strategies used. In this study, we introduce a novel competitive, ultra-high-sensitivity impedance biosensor by utilizing composite nanomaterials and T1R1 as a composite signal probe. Pd/Cu-TCPP(Fe) had a substantial surface area, effectively enhancing the loading capacity of the T1R1 and thus augmenting the biosensor's recognition precision. Furthermore, the Pd/Cu-TCPP(Fe) elevated peroxidase-like activity catalyzed the formation of insoluble precipitates of 4-chloro-1-naphthol (4-CN), resulting in cascaded amplification of the impedance signal. The remarkable catalytic activity of the composite signal probe endowed the biosensor with exceptional analytical performance, featuring a limit of detection (LOD) of 0.86 pg/mL and a linear detection range spanning from 10 to 10,000 pg/mL. Successful application of the biosensor for umami detection in fish was demonstrated, signifying its substantial potential in food-flavor evaluation.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Impedancia Eléctrica , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Límite de Detección , Antioxidantes
6.
Int J Biol Macromol ; 256(Pt 2): 128414, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029903

RESUMEN

Preadipocyte proliferation is an essential process in adipose development. During proliferation of preadipocytes, transcription factors play crucial roles. HMG-box protein 1 (HBP1) is an important transcription factor of cellular proliferation. However, the function and underlying mechanisms of HBP1 in the proliferation of preadipocytes remain unclear. Here, we found that the expression level of HBP1 decreased first and then increased during the proliferation of chicken preadipocytes. Knockout of HBP1 could inhibit the proliferation of preadipocytes, while overexpression of HBP1 could promote the proliferation of preadipocytes. ChIP-seq data showed that HBP1 had the unique DNA binding motif in chicken preadipocytes. By integrating ChIP-Seq and RNA-Seq, we revealed a total of 3 candidate target genes of HBP1. Furthermore, the results of ChIP-qPCR, RT-qPCR, luciferase reporter assay and EMSA showed that HBP1 could inhibit the transcription of suppressor of cytokine signaling 3 (SOCS3) by binding to its promoter. Moreover, we confirmed that SOCS3 can mediate the regulation of HBP1 on the proliferation of preadipocytes through RNAi and rescue experiments. Altogether, these data demonstrated that HBP1 directly targets SOCS3 to regulate chicken preadipocyte proliferation. Our findings expand the transcriptional regulatory network of preadipocyte proliferation, and they will be helpful in formulating a molecular breeding scheme to control excessive abdominal fat deposition and to improve meat quality in chickens.


Asunto(s)
Pollos , Factores de Transcripción , Animales , Pollos/metabolismo , Factores de Transcripción/genética , Interferencia de ARN , Proliferación Celular/genética
7.
Nature ; 615(7952): 526-534, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890225

RESUMEN

The nucleolus is the most prominent membraneless condensate in the nucleus. It comprises hundreds of proteins with distinct roles in the rapid transcription of ribosomal RNA (rRNA) and efficient processing within units comprising a fibrillar centre and a dense fibrillar component and ribosome assembly in a granular component1. The precise localization of most nucleolar proteins and whether their specific localization contributes to the radial flux of pre-rRNA processing have remained unknown owing to insufficient resolution in imaging studies2-5. Therefore, how these nucleolar proteins are functionally coordinated with stepwise pre-rRNA processing requires further investigation. Here we screened 200 candidate nucleolar proteins using high-resolution live-cell microscopy and identified 12 proteins that are enriched towards the periphery of the dense fibrillar component (PDFC). Among these proteins, unhealthy ribosome biogenesis 1 (URB1) is a static, nucleolar protein that ensures 3' end pre-rRNA anchoring and folding for U8 small nucleolar RNA recognition and the subsequent removal of the 3' external transcribed spacer (ETS) at the dense fibrillar component-PDFC boundary. URB1 depletion leads to a disrupted PDFC, uncontrolled pre-rRNA movement, altered pre-rRNA conformation and retention of the 3' ETS. These aberrant 3' ETS-attached pre-rRNA intermediates activate exosome-dependent nucleolar surveillance, resulting in decreased 28S rRNA production, head malformations in zebrafish and delayed embryonic development in mice. This study provides insight into functional sub-nucleolar organization and identifies a physiologically essential step in rRNA maturation that requires the static protein URB1 in the phase-separated nucleolus.


Asunto(s)
Nucléolo Celular , Exosomas , Precursores del ARN , Procesamiento Postranscripcional del ARN , ARN Ribosómico , Pez Cebra , Animales , Ratones , Nucléolo Celular/metabolismo , Desarrollo Embrionario , Exosomas/metabolismo , Cabeza/anomalías , Microscopía , Proteínas Nucleares/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico 28S/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
8.
Chem Sci ; 13(30): 8797-8803, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35975146

RESUMEN

The rational design of efficient catalysts for electrochemical water oxidation highly depends on the understanding of reaction pathways, which still remains a challenge. Herein, mononuclear and binuclear cobalt phthalocyanine (mono-CoPc and bi-CoPc) with a well-defined molecular structure are selected as model electrocatalysts to study the water oxidation mechanism. We found that bi-CoPc on a carbon support (bi-CoPc/carbon) shows an overpotential of 357 mV at 10 mA cm-2, much lower than that of mono-CoPc/carbon (>450 mV). Kinetic analysis reveals that the rate-determining step (RDS) of the oxygen evolution reaction (OER) over both electrocatalysts is a nucleophilic attack process involving a hydroxy anion (OH-). However, the substrate nucleophilically attacked by OH- for bi-CoPc is the phthalocyanine cation-radical species (CoII-Pc-Pc˙+-CoII-OH) that is formed from the oxidation of the phthalocyanine ring, while cobalt oxidized species (Pc-CoIII-OH) is involved in mono-CoPc as evidenced by the operando UV-vis spectroelectrochemistry technique. DFT calculations show that the reaction barrier for the nucleophilic attack of OH- on CoII-Pc-Pc˙+-CoII-OH is 1.67 eV, lower than that of mono-CoPc with Pc-CoIII-OH nucleophilically attacked by OH- (1.78 eV). The good agreement between the experimental and theoretical results suggests that bi-CoPc can effectively stabilize the accumulated oxidative charges in the phthalocyanine ring, and is thus bestowed with a higher OER performance.

9.
Aquat Toxicol ; 249: 106211, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35667248

RESUMEN

4-octylphenol (4-OP), a toxic estrogenic environmental pollutant, can threaten aquatic animal and human health. However, toxic effect of 4-OP on fish has not been reported. To investigate molecular mechanism of gill poisoning caused by 4-OP exposure, a carp 4-OP poisoning model was established, and then blood and gills were collected on day 60. The results demonstrated that gill was a target organ attacked by 4-OP, and exposure to 4-OP caused carp gill inflammatory injury. There were 1605 differentially expressed genes (DEGs, including 898 up-regulated DEGs and 707 down-regulated DEGs). KEGG and GO were used to further analyze obtained 1605 DEGs, indicating that complement activation, immune response, and inflammatory response participated in the mechanism of 4-OP-caused carp gill inflammatory injury. Our data at transcription level further revealed that 4-OP caused complement activation through triggering complement component 3a/complement component 3a receptor (C3a/C3aR) axis and complement component 5a/complement component 5a receptor 1 (C5a/C5aR1) axis, induced immunosuppression through the imbalances of T helper (Th) 1/Th2 cells and regulatory T (Treg)/Th17 cells, as well as caused inflammatory injury via toll like receptor 7/inhibitor kappa B alpha/nuclear factor-kappa B (TLR7/IκBα/NF-κB) pathway. Taken together, immunosuppression participated in complement activation-mediated inflammatory damage in carp gills after 4-OP treatment. The findings of this study will provide pioneering information and theoretical support for the mechanism of 4-OP poisoning, and will provide reference for the assessment of estrogenic environmental pollution risk.


Asunto(s)
Carpas , Activación de Complemento , Fenoles , Contaminantes Químicos del Agua , Animales , Carpas/metabolismo , Complemento C3a/metabolismo , Complemento C5a/metabolismo , Proteínas de Peces/genética , Branquias/metabolismo , Terapia de Inmunosupresión , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Fenoles/toxicidad , Receptor Toll-Like 7/metabolismo , Contaminantes Químicos del Agua/toxicidad
10.
Adv Mater ; 34(29): e2110610, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35589018

RESUMEN

Photoelectrochemical (PEC) water splitting for renewable hydrogen production has been regarded as a promising solution to utilize solar energy. However, most photoelectrodes still suffer from poor film quality and poor charge separation properties, mainly owing to the possible formation of detrimental defects including microcracks and grain boundaries. Herein, a molecular coordination engineering strategy is developed by employing acetylacetone (Acac) and poly(ethylene glycol) (PEG) dual ligands to regulate the nucleation and crystal growth of the lead chromate (PbCrO4 ) photoanode, resulting in the formation of a high-quality film with large grain size, well-stitched grain boundaries, and reduced oxygen vacancies defects. With these efforts, the nonradiative charge recombination is efficiently suppressed, leading to the enhancement of its charge separation efficiency from 47% to 90%. After decorating with Co-Pi cocatalyst, the PbCrO4 photoanode achieves a photocurrent density of 3.15 mA cm-2 at 1.23 V (vs RHE under simulated AM1.5G) and an applied bias photon-to-current efficiency (ABPE) of 0.82%. This work provides a new strategy to modulate the nucleation and growth of high-quality photoelectrodes for efficient PEC water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...