Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Aging Neurosci ; 16: 1357347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469164

RESUMEN

Introduction: Deterioration of cognitive functions is commonly associated with aging, although there is wide variation in the onset and manifestation. Albeit heterogeneity in age-related cognitive decline has been studied at the cellular and molecular level, there is poor evidence for electrophysiological correlates. The aim of the current study was to address the electrophysiological basis of heterogeneity of cognitive functions in cognitively Inferior and Superior old (19-20 months) rats in the ventral tegmental area (VTA) and the hippocampus, having Young (12 weeks) rats as a control. The midbrain VTA operates as a hub amidst affective and cognitive facets, processing sensory inputs related to motivated behaviours and hippocampal memory. Increasing evidence shows direct dopaminergic and non-dopaminergic input from the VTA to the hippocampus. Methods: Aged Superior and Inferior male rats were selected from a cohort of 88 animals based on their performance in a spatial learning and memory task. Using in vivo single-cell recording in the VTA, we examined the electrical activity of different neuronal populations (putative dopaminergic, glutamatergic and GABAergic neurons). In the same animals, basal synaptic transmission and synaptic plasticity were examined in hippocampal slices. Results: Electrophysiological recordings from the VTA and hippocampus showed alterations associated with aging per se, together with differences specifically linked to the cognitive status of aged animals. In particular, the bursting activity of dopamine neurons was lower, while the firing frequency of glutamatergic neurons was higher in VTA of Inferior old rats. The response to high-frequency stimulation in hippocampal slices also discriminated between Superior and Inferior aged animals. Discussion: This study provides new insight into electrophysiological information underlying compromised cerebral ageing. Further understanding of brain senescence, possibly related to neurocognitive decline, will help develop new strategies towards the preservation of a high quality of life.

2.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069277

RESUMEN

S-CE-123, a novel dopamine transporter inhibitor, has emerged as a potential candidate for cognitive enhancement. The objective of this study was to compare the tissue distribution profiles, with a specific focus on central nervous system distribution and metabolism, of S-CE-123 and R-modafinil. To address this objective, a precise liquid chromatography-high resolution mass spectrometry method was developed and partially validated. Neuropharmacokinetic parameters were assessed using the Combinatory Mapping Approach. Our findings reveal distinct differences between the two compounds. Notably, S-CE-123 demonstrates a significantly superior extent of transport across the blood-brain barrier (BBB), with an unbound brain-to-plasma concentration ratio (Kp,uu,brain) of 0.5, compared to R-modafinil's Kp,uu,brain of 0.1. A similar pattern was observed for the transport across the blood-spinal cord barrier. Concerning the drug transport across cellular membranes, we observed that S-CE-123 primarily localizes in the brain interstitial space, whereas R-modafinil distributes more evenly across both sides of the plasma membrane of the brain's parenchymal cells (Kp,uu,cell). Furthermore, our study highlights the substantial differences in hepatic metabolic stability, with S-CE-123 having a 9.3-fold faster metabolism compared to R-modafinil. In summary, the combination of improved BBB transport and higher affinity of S-CE-123 to dopamine transporters in comparison to R-modafinil makes S-CE-123 a promising candidate for further testing for the treatment of cognitive decline.


Asunto(s)
Compuestos de Bencidrilo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Compuestos de Bencidrilo/metabolismo , Compuestos de Bencidrilo/farmacocinética , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Modafinilo/metabolismo
3.
Biomolecules ; 13(9)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759815

RESUMEN

The high structural similarity, especially in transmembrane regions, of dopamine, norepinephrine, and serotonin transporters, as well as the lack of all crystal structures of human isoforms, make the specific targeting of individual transporters rather challenging. Ligand design itself is also rather limited, as many chemists, fully aware of the synthetic and analytical challenges, tend to modify lead compounds in a way that reduces the number of chiral centers and hence limits the potential chemical space of synthetic ligands. We have previously shown that increasing molecular complexity by introducing additional chiral centers ultimately leads to more selective and potent dopamine reuptake inhibitors. Herein, we significantly extend our structure-activity relationship of dopamine transporter-selective ligands and further demonstrate how stereoisomers of defined absolute configuration may fine-tune and direct the activity towards distinct targets. From the pool of active compounds, using the examples of stereoisomers 7h and 8h, we further showcase how in vitro activity significantly differs in in vivo drug efficacy experiments, calling for proper validation of individual stereoisomers in animal studies. Furthermore, by generating a large library of compounds with defined absolute configurations, we lay the groundwork for computational chemists to further optimize and rationally design specific monoamine transporter reuptake inhibitors.


Asunto(s)
Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Animales , Humanos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Transporte Biológico , Relación Estructura-Actividad , Norepinefrina , Ligandos
4.
Int J Neuropsychopharmacol ; 26(11): 784-795, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37725477

RESUMEN

BACKGROUND: Dopamine plays a key role in several physiological functions such as motor control, learning and memory, and motivation and reward. The atypical dopamine transporter inhibitor S,S stereoisomer of 5-(((S)-((S)-(3-bromophenyl)(phenyl)methyl)sulfinyl)methyl)thiazole (CE-158) has been recently reported to promote behavioral flexibility and restore learning and memory in aged rats. METHODS: Adult male rats were i.p. administered for 1 or 10 days with CE-158 at the dose of 1 or 10 mg/kg and tested for extracellular dopamine in the medial prefrontal cortex by means of intracerebral microdialysis and single unit cell recording in the same brain area. Moreover, the effects of acute and chronic CE-158 on exploratory behavior, locomotor activity, prepulse inhibition, working memory, and behavioral flexibility were also investigated. RESULTS: CE-158 dose-dependently potentiated dopamine neurotransmission in the medial prefrontal cortex as assessed by intracerebral microdialysis. Moreover, repeated exposure to CE-158 at 1 mg/kg was sufficient to increase the number of active pyramidal neurons and their firing frequency in the same brain area. In addition, CE-158 at the dose of 10 mg/kg stimulates exploratory behavior to the same extent after acute or chronic treatment. Noteworthy, the chronic treatment at both doses did not induce any behavioral alterations suggestive of abuse potential (e.g., motor behavioral sensitization) or pro-psychotic-like effects such as disruption of sensorimotor gating or impairments in working memory and behavioral flexibility as measured by prepulse inhibition and Y maze. CONCLUSIONS: Altogether, these findings confirm CE-158 as a promising pro-cognitive agent and contribute to assessing its preclinical safety profile in a chronic administration regimen for further translational testing.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Microdiálisis , Corteza Prefrontal , Transmisión Sináptica
5.
Front Aging Neurosci ; 15: 1140708, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37600518

RESUMEN

Introduction: Aging is in general associated with a decline in cognitive functions. Looking more closely, there is a huge heterogeneity in the extent of cognitive (dys-)abilities in the aged population. It ranges from the population of resistant, resilient, cognitively unimpaired individuals to patients with severe forms of dementias. Besides the known genetic, environmental and life style factors that shape the cognitive (dys-)abilities in aging, the underlying molecular mechanisms and signals related to cognitive heterogeneity are completely unknown. One putative mechanism underlying cognitive heterogeneity might be neuroinflammation, exerted through microglia, the brain's innate immune cells, as neuroinflammation is central to brain aging and neurodegenerative diseases. Recently, leukotrienes (LTs), i.e., small lipid mediators of inflammation produced by microglia along aging and neurodegeneration, got in the focus of geroscience as they might determine cognitive dysfunctions in aging. Methods: Here, we analyzed the brain's expression of key components of the LT synthesis pathway, i.e., the expression of 5-lipoxygenase (5-Lox), the key enzyme in LT production, and 5-lipoxygenase-activating protein (FLAP) in young and aged rats. More specifically, we used a cohort of rats, which, although grown up and housed under identical conditions, developed into aged cognitively unimpaired and aged cognitively impaired traits. Results: Expression of 5-Lox was increased within the brain of aged rats with the highest levels detected in cognitively impaired animals. The number of microglia cells was higher in the aged compared to the young brains with, again, the highest numbers of 5-Lox expressing microglia in the aged cognitively impaired rats. Remarkably, lower cognitive scores in the aged rats associated with higher numbers of 5-Lox positive microglia in the animals. Similar data were obtained for FLAP, at least in the cortex. Our data indicate elevated levels of the LT system in the brain of cognitively impaired animals. Discussion: We conclude that 5-Lox expressing microglia potentially contribute to the age-related cognitive decline in the brain, while low levels of the LT system might indicate and foster higher cognitive functions and eventually cognitive reserve and resilience in aging.

6.
Biomolecules ; 13(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36979402

RESUMEN

The worldwide increase in cognitive decline, both in aging and with psychiatric disorders, warrants a search for pharmacological treatment. Although dopaminergic treatment approaches represent a major step forward, current dopamine transporter (DAT) inhibitors are not sufficiently specific as they also target other transporters and receptors, thus showing unwanted side effects. Herein, we describe an enantiomerically pure, highly specific DAT inhibitor, S-CE-123, synthetized in our laboratory. Following binding studies to DAT, NET and SERT, GPCR and kinome screening, pharmacokinetics and a basic neurotoxic screen, S-CE-123 was tested for its potential to enhance and/or rescue cognitive functions in young and in aged rats in the non-invasive reward-motivated paradigm of a hole-board test for spatial learning. In addition, an open field study with young rats was carried out. We demonstrated that S-CE-123 is a low-affinity but highly selective dopamine reuptake inhibitor with good bioavailability. S-CE-123 did not induce hyperlocomotion or anxiogenic or stereotypic behaviour in young rats. Our compound improved the performance of aged but not young rats in a reward-motivated task. The well-described impairment of the dopaminergic system in aging may underlie the age-specific effect. We propose S-CE-123 as a possible candidate for developing a tentative therapeutic strategy for age-related cognitive decline and cognitive dysfunction in psychiatric disorders.


Asunto(s)
Compuestos de Bencidrilo , Dopamina , Ratas , Animales , Dopamina/metabolismo , Compuestos de Bencidrilo/farmacología , Inhibidores de Captación de Dopamina/química , Inhibidores de Captación de Dopamina/farmacología , Cognición
7.
Amino Acids ; 54(9): 1311-1326, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35817992

RESUMEN

Loss of cognitive function is a typical consequence of aging in humans and rodents. The extent of decline in spatial memory performance of rats, assessed by a hole-board test, reaches from unimpaired and comparable to young individuals to severely memory impaired. Recently, proteomics identified peroxiredoxin 6, an enzyme important for detoxification of oxidized phospholipids, as one of several synaptosomal proteins discriminating between aged impaired and aged unimpaired rats. In this study, we investigated several components of the epilipidome (modifications of phospholipids) of the prefrontal cortex of young, aged memory impaired (AI) and aged unimpaired (AU) rats. We observed an age-related increase in phospholipid hydroperoxides and products of phospholipid peroxidation, including reactive aldehydophospholipids. This increase went in hand with cortical lipofuscin autofluorescence. The memory impairment, however, was paralleled by additional specific changes in the aged rat brain epilipidome. There was a profound increase in phosphocholine hydroxides, and a significant decrease in phosphocholine-esterified azelaic acid. As phospholipid-esterified fatty acid hydroxides, and especially those deriving from arachidonic acid are both markers and effectors of inflammation, the findings suggest that in addition to age-related reactive oxygen species (ROS) accumulation, age-related impairment of spatial memory performance has an additional and distinct (neuro-) inflammatory component.


Asunto(s)
Fosfolípidos , Fosforilcolina , Anciano , Envejecimiento/metabolismo , Animales , Encéfalo/metabolismo , Hipocampo/metabolismo , Humanos , Trastornos de la Memoria/metabolismo , Fosfolípidos/metabolismo , Fosforilcolina/metabolismo , Ratas
8.
Biomolecules ; 12(7)2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35883437

RESUMEN

Dopamine (DA), the most abundant human brain catecholaminergic neurotransmitter, modulates key behavioral and neurological processes in young and senescent brains, including motricity, sleep, attention, emotion, learning and memory, and social and reward-seeking behaviors. The DA transporter (DAT) regulates transsynaptic DA levels, influencing all these processes. Compounds targeting DAT (e.g., cocaine and amphetamines) were historically used to shape mood and cognition, but these substances typically lead to severe negative side effects (tolerance, abuse, addiction, and dependence). DA/DAT signaling dysfunctions are associated with neuropsychiatric and progressive brain disorders, including Parkinson's and Alzheimer diseases, drug addiction and dementia, resulting in devastating personal and familial concerns and high socioeconomic costs worldwide. The development of low-side-effect, new/selective medicaments with reduced abuse-liability and which ameliorate DA/DAT-related dysfunctions is therefore crucial in the fields of medicine and healthcare. Using the rat as experimental animal model, the present work describes the synthesis and pharmacological profile of (S)-MK-26, a new modafinil analogue with markedly improved potency and selectivity for DAT over parent drug. Ex vivo electrophysiology revealed significantly augmented hippocampal long-term synaptic potentiation upon acute, intraperitoneally delivered (S)-MK-26 treatment, whereas in vivo experiments in the hole-board test showed only lesser effects on reference memory performance in aged rats. However, in effort-related FR5/chow and PROG/chow feeding choice experiments, (S)-MK-26 treatment reversed the depression-like behavior induced by the dopamine-depleting drug tetrabenazine (TBZ) and increased the selection of high-effort alternatives. Moreover, in in vivo microdialysis experiments, (S)-MK-26 significantly increased extracellular DA levels in the prefrontal cortex and in nucleus accumbens core and shell. These studies highlight (S)-MK-26 as a potent enhancer of transsynaptic DA and promoter of synaptic plasticity, with predominant beneficial effects on effort-related behaviors, thus proposing therapeutic potentials for (S)-MK-26 in the treatment of low-effort exertion and motivational dysfunctions characteristic of depression and aging-related disorders.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Motivación/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Ratas
9.
Front Psychiatry ; 13: 799433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370807

RESUMEN

Dopamine (DA) is critically involved in different functions of the central nervous system (CNS) including control of voluntary movement, affect, reward, sleep, and cognition. One of the key components of DA neurotransmission is DA reuptake by the DA transporter (DAT), ensuring rapid clearance of DA from the synaptic cleft. Thus, lack of DAT leads to persistent high extracellular DA levels. While there is strong evidence for a role of striatal dopaminergic activity in learning and memory processes, little is known about the contribution of DAT deficiency to conditional learning impairments and underlying molecular processes. DAT-knockout (DAT-KO) rats were tested in a set of behavioral experiments evaluating conditional associative learning, which requires unaltered striatal function. In parallel, a large-scale proteomic analysis of the striatum was performed to identify molecular factors probably underlying behavioral patterns. DAT-KO rats were incapable to acquire a new operant skill in Pavlovian/instrumental autoshaping, although the conditional stimulus-unconditional stimulus (CS-US) association seems to be unaffected. These findings suggest that DAT directly or indirectly contributes to the reduction of transference of incentive salience from the reward to the CS. We propose that specific impairment of conditional learning might be caused by molecular adaptations to the hyperdopaminergic state, presumably by dopamine receptor 1 (DRD1) hypofunction, as proposed by proteomic analysis. Whether DRD1 downregulation can cause cognitive deficits in the hyperdopaminergic state is the subject of discussion, and further studies are needed to answer this question. This study may be useful for the interpretation of previous and the design of future studies in the dopamine field.

10.
Sci Rep ; 11(1): 23962, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907284

RESUMEN

The lack of novel cognitive enhancer drugs in the clinic highlights the prediction problems of animal assays. The objective of the current study was to test a putative cognitive enhancer in a rodent cognitive test system with improved translational validity and clinical predictivity. Cognitive profiling was complemented with post mortem proteomic analysis. Twenty-seven male Lister Hooded rats (26 months old) having learned several cognitive tasks were subchronically treated with S-CE-123 (CE-123) in a randomized blind experiment. Rats were sacrificed after the last behavioural procedure and plasma and brains were collected. A label-free quantification approach was used to characterize proteomic changes in the synaptosomal fraction of the prefrontal cortex. CE-123 markedly enhanced motivation which resulted in superior performance in a new-to-learn operant discrimination task and in a cooperation assay of social cognition, and mildly increased impulsivity. The compound did not affect attention, spatial and motor learning. Proteomic quantification revealed 182 protein groups significantly different between treatment groups containing several proteins associated with aging and neurodegeneration. Bioinformatic analysis showed the most relevant clusters delineating synaptic vesicle recycling, synapse organisation and antioxidant activity. The cognitive profile of CE-123 mapped by the test system resembles that of modafinil in the clinic showing the translational validity of the test system. The findings of modulated synaptic systems are paralleling behavioral results and are in line with previous evidence for the role of altered synaptosomal protein groups in mechanisms of cognitive function.


Asunto(s)
Envejecimiento/metabolismo , Cognición/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Modafinilo , Corteza Prefrontal/metabolismo , Animales , Compuestos de Bencidrilo/farmacología , Masculino , Modafinilo/análogos & derivados , Modafinilo/farmacología , Ratas
11.
Mol Psychiatry ; 26(12): 7076-7090, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34244620

RESUMEN

Aging-related neurological deficits negatively impact mental health, productivity, and social interactions leading to a pronounced socioeconomic burden. Since declining brain dopamine signaling during aging is associated with the onset of neurological impairments, we produced a selective dopamine transporter (DAT) inhibitor to restore endogenous dopamine levels and improve cognitive function. We describe the synthesis and pharmacological profile of (S,S)-CE-158, a highly specific DAT inhibitor, which increases dopamine levels in brain regions associated with cognition. We find both a potentiation of neurotransmission and coincident restoration of dendritic spines in the dorsal hippocampus, indicative of reinstatement of dopamine-induced synaptic plasticity in aging rodents. Treatment with (S,S)-CE-158 significantly improved behavioral flexibility in scopolamine-compromised animals and increased the number of spontaneously active prefrontal cortical neurons, both in young and aging rodents. In addition, (S,S)-CE-158 restored learning and memory recall in aging rats comparable to their young performance in a hippocampus-dependent hole board test. In sum, we present a well-tolerated, highly selective DAT inhibitor that normalizes the age-related decline in cognitive function at a synaptic level through increased dopamine signaling.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Plasticidad Neuronal , Envejecimiento , Animales , Encéfalo , Hipocampo , Plasticidad Neuronal/fisiología , Ratas
12.
Front Aging Neurosci ; 12: 204, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719597

RESUMEN

Lipids play a major role for several brain functions, including cognition and memory. There is a series of work on individual lipids showing involvement in memory mechanisms, a concise lipidome was not reported so far. Moreover, there is no evidence for age-related memory decline and there is only work on brain of young vs. aging animals. Aging animals, however, are not a homogeneous group with respect to memory impairments, thus animals with impaired and unimpaired memory can be discriminated. Following recent studies of hippocampal lipid profiles and hypothalamus controlled hormone profiles, the aim of this study was to compare hypothalamic, lipidomic changes in male Sprague-Dawley rats between young (YM), old impaired (OMI) and old unimpaired (OMU) males. Grouping criterions for aged rats were evaluated by testing them in a spatial memory task, the hole-board. YMs were also tested. Subsequently brains were removed, dissected and hypothalami were kept at -80°C until sample preparation and analysis on liquid chromatography / mass spectrometry (LC-MS). Significant differences in the amounts of a series of lipids from several classes could be detected between young and aged and between OMI and OMU. A large number of lipids were increased in OMI and a smaller number in OMU as compared to young rats. Differences of lipid ratios (log2 of ratio) between OMI and OMU consisted of glycerophosphocholines (aPC 36:2 and 36:3; PC 34:0, 36:1, 36:3 and 40:2); Glycerophosphoethanolamines (aPE 34:2, 38:5 and 40:5; LPE 18:1, 20:1, 20:4, 22:4 and 22:6; PE36:1 and 38:4); glycerophosphoserines (PS 36:1, 40:4, and 40:6); triacylglycerol TG 52:4; ceramide Cer 17:2 and sphingomyelin SM 20:0. Thus, hypothalamic lipid profiles across different lipid classes discriminate aged male animals into OMU and OMI. The underlying mechanisms may be related to different functional networks of lipids in memory mechanisms and differences in metabolic processes. The study underlines the importance of lipidomics in the pathophysiology of age-related cognitive decline. The necessity of evaluating the cognitive status of aged subjects by behavioral tests results in more specific detection of critical lipids in memory decline, on which now can be focused in subsequent memory studies in animals and humans.

13.
Biomolecules ; 10(5)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443397

RESUMEN

Treatments for cognitive impairments associated with neuropsychiatric disorders, such as attention deficit hyperactivity disorder or narcolepsy, aim at modulating extracellular dopamine levels in the brain. CE-123 (5-((benzhydrylsulfinyl)methyl) thiazole) is a novel modafinil analog with improved specificity and efficacy for dopamine transporter inhibition that improves cognitive and motivational processes in experimental animals. We studied the neuropharmacological and behavioral effects of the S-enantiomer of CE-123 ((S)-CE-123) and R-modafinil in cognitive- and reward-related brain areas of adult male rats. In vivo single unit recordings in anesthetized animals showed that (S)-CE-123, but not R-modafinil, dose-dependently (1.25 to 10 mg/kg i.v.) reduced firing of pyramidal neurons in the infralimbic/prelimbic (IL/PrL) cortex. Neither compound the affected firing activity of ventral tegmental area dopamine cells. In freely moving animals, (S)-CE-123 (10 mg/kg i.p.) increased extracellular dopamine levels in the IL/PrL, with different patterns when compared to R-modafinil (10 mg/kg i.p.); in the nucleus accumbens shell, a low and transitory increase of dopamine was observed only after (S)-CE-123. Neither (S)-CE-123 nor R-modafinil initiated the emission of 50-kHz ultrasonic vocalizations, a behavioral marker of positive affect and drug-mediated reward. Our data support previous reports of the procognitive effects of (S)-CE-123, and show a minor impact on reward-related dopaminergic areas.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Cognición , Dopaminérgicos/farmacología , Dopamina/metabolismo , Sistema Límbico/efectos de los fármacos , Nootrópicos/farmacología , Corteza Prefrontal/efectos de los fármacos , Potenciales de Acción , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Sistema Límbico/fisiología , Masculino , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley , Recompensa
14.
Amino Acids ; 52(4): 543-553, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32236698

RESUMEN

The aim of the current study was to investigate whether doublecortin (DCX), insulin-like growth factor receptor 1 (IGF-1R) and metabotropic glutamate receptor 5 (mGluR5) levels are indeed modified in the aging rat hippocampal individual subareas (rather than total hippocampal tissue as in previous reports) at the protein and mRNA level and whether the methylation status contributes to these changes. Since the aging population is not homogeneous in terms of spatial memory performance, we examined whether changes in DCX, IGF-1R and mGluR5 are linked to cognitive aging. Aged (22 months) male Sprague Dawley rats were trained in the hole-board, a spatial memory task, and were subdivided according to performance to aged impaired and aged unimpaired groups. Age- and memory performance-dependent changes in mRNA steady-state levels, protein levels and DNA methylation status of DCX, IGF-1R and mGluR5 were evaluated by RT-PCR, immunoblotting and bisulfite pyrosequencing. Extending previous findings, we detected decreased DCX protein and mRNA levels in dentate gyrus (DG) of aged animals. IGF-1 signaling is a key event and herein we show that mRNA levels for IGF-1R were unchanged although reduced at the protein level. This finding may simply reflect that these protein levels are regulated at the level of protein synthesis as well as protein degradation. We provide evidence that promoter methylation is not involved in regulation of mRNA and protein levels of DCX, IGF-1R and mGluR5 during aging. Moreover, there was no significant difference between aged rats with impaired and aged rats with unimpaired memory at the protein and mRNA level. Findings propose that changes in the abovementioned protein levels may not be relevant for performance in the spatial memory task used in aged rats.


Asunto(s)
Hipocampo/metabolismo , Proteínas Asociadas a Microtúbulos/deficiencia , Neuropéptidos/deficiencia , Receptor IGF Tipo 1/deficiencia , Envejecimiento/metabolismo , Animales , Cognición , Metilación de ADN , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Masculino , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/genética , Neuropéptidos/análisis , Neuropéptidos/genética , Regiones Promotoras Genéticas , Ratas , Ratas Sprague-Dawley , Receptor IGF Tipo 1/análisis , Receptor IGF Tipo 1/genética , Receptor del Glutamato Metabotropico 5/análisis , Receptor del Glutamato Metabotropico 5/genética , Receptor del Glutamato Metabotropico 5/metabolismo , Memoria Espacial
15.
J Med Chem ; 63(1): 391-417, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31841637

RESUMEN

Atypical dopamine reuptake inhibitors, such as modafinil, are used for the treatment of sleeping disorders and investigated as potential therapeutics against cocaine addiction and for cognitive enhancement. Our continuous effort to find modafinil analogues with higher inhibitory activity on and selectivity toward the dopamine transporter (DAT) has previously led to the promising thiazole-containing derivatives CE-103, CE-111, CE-123, and CE-125. Here, we describe the synthesis and activity of a series of compounds based on these scaffolds, which resulted in several new selective DAT inhibitors and gave valuable insights into the structure-activity relationships. Introduction of the second chiral center and subsequent chiral separations provided all four stereoisomers, whereby the S-configuration on both generally exerted the highest activity and selectivity on DAT. The representative compound of this series was further characterized by in silico, in vitro, and in vivo studies that have demonstrated both safety and efficacy profile of this compound class.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Inhibidores de Captación de Dopamina/farmacología , Modafinilo/análogos & derivados , Modafinilo/farmacología , Inhibidores de Captación de Serotonina y Norepinefrina/farmacología , Tiazoles/farmacología , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de Captación de Dopamina/síntesis química , Inhibidores de Captación de Dopamina/metabolismo , Inhibidores de Captación de Dopamina/farmacocinética , Células HEK293 , Humanos , Masculino , Modafinilo/metabolismo , Modafinilo/farmacocinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/antagonistas & inhibidores , Unión Proteica , Ratas Sprague-Dawley , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Inhibidores de Captación de Serotonina y Norepinefrina/síntesis química , Inhibidores de Captación de Serotonina y Norepinefrina/metabolismo , Inhibidores de Captación de Serotonina y Norepinefrina/farmacocinética , Estereoisomerismo , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/metabolismo , Tiazoles/farmacocinética
16.
Front Aging Neurosci ; 11: 198, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417400

RESUMEN

Similar to humans, the normal aged rat population is not homogeneous in terms of cognitive function. Two distinct subpopulations of aged Sprague-Dawley rats can be identified on the basis of spatial memory performance in the hole-board paradigm. It was the aim of the study to reveal protein changes relevant to aging and spatial memory performance. Aged impaired (AI) and unimpaired (AU) male rats, 22-24 months old were selected from a large cohort of 160 animals; young animals served as control. Enriched synaptosomal fractions from dentate gyrus from behaviorally characterized old animals were used for isobaric tags labeling based quantitative proteomic analysis. As differences in peroxiredoxin 6 (PRDX6) levels were a pronounced finding, PRDX6 levels were also quantified by immunoblotting. AI showed impaired spatial memory abilities while AU performed comparably to young animals. Our study demonstrates substantial quantitative alteration of proteins involved in energy metabolism, inflammation and synaptic plasticity during aging. Moreover, we identified protein changes specifically coupled to memory performance of aged rats. PRDX6 levels clearly differentiated AI from AU and levels in AU were comparable to those of young animals. In addition, it was observed that stochasticity in protein levels increased with age and discriminate between AI and AU groups. Moreover, there was a significantly higher variability of protein levels in AI. PRDX6 is a member of the PRDX family and well-defined as a cystein-1 PRDX that reduces and detoxifies hydroxyperoxides. It is well-known and documented that the aging brain shows increased active oxygen species but so far no study proposed a potential target with antioxidant activity that would discriminate between impaired and unimpaired memory performers. Current data, representing so far the largest proteomics data set in aging dentate gyrus (DG), provide the first evidence for a probable role of PRDX6 in memory performance.

17.
Proteomics ; 19(13): e1900094, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31115157

RESUMEN

The olfactory conditioning of the bee proboscis extension reflex (PER) is extensively used as a paradigm in associative learning of invertebrates but with limited molecular investigations. To investigate which protein changes are linked to olfactory conditioning, a non-sophisticated conditioning model is applied using the PER in the honeybee (Apis mellifera). Foraging honeybees are assigned into three groups based on the reflex behavior and training: conditioned using 2-octanone (PER-conditioned), and sucrose and water controls. Thereafter, the brain synaptosomal proteins are isolated and analyzed by quantitative proteomics using stable isotope labeling (TMT). Additionally, the complex proteome dataset of the bee brain is generated with a total number of 5411 protein groups, including key players in neurotransmitter signaling. The most significant categories affected during olfactory conditioning are associated with "SNARE interactions in vesicular transport" (BET1 and VAMP7), ABC transporters, and fatty acid degradation pathways.


Asunto(s)
Abejas/fisiología , Encéfalo/fisiología , Condicionamiento Clásico/fisiología , Olfato/fisiología , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Marcaje Isotópico , Proteoma/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA