Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
bioRxiv ; 2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39484485

RESUMEN

Estrogen receptor positive (ER+) breast cancer is the most common subtype of breast cancer and is an age-related disease. The peak incidence of diagnosis occurs around age 70, even though these post-menopausal patients have low circulating levels of estradiol (E2). Despite the hormone sensitivity of age-related tumors, we have a limited understanding of the interplay between systemic and local hormones, chronic inflammation, and immune changes that contribute to the growth and development of these tumors. Here, we show that aged F344 rats treated with the dimethylbenz(a)anthracene / medroxyprogestrone acetate (DMBA/MPA) carcinogen develop more tumors at faster rates than their younger counterparts, suggesting that the aged environment promotes tumor initiation and impacts growth. Single-nuclei RNA-seq (snRNA-seq) of the tumors showed broad local immune dysfunction that was associated with circulating chronic inflammation. Across a broad cohort of specimens from patients with ER+ breast cancer and age-matched donors of normal breast tissue, we observe that even with an estrone (E1)-predominant estrogen disposition in the systemic circulation, tumors in older patients increase HSD17B7 expression to convert E1 to E2 in the tumor microenvironment (TME) and have local E2 levels similar to pre-menopausal patients. Concurrently, trackable increases in several chemokines, defined most notably by CCL2, promote a chronically inflamed but immune dysfunctional TME. This unique milieu in the aged TME, characterized by high local E2 and chemokine-enriched chronic inflammation, promotes both accumulation of tumor-associated macrophages (TAMs), which serve as signaling hubs, as well as polarization of TAMs towards a CD206+/PD-L1+, immunosuppressive phenotype. Pharmacologic targeting of estrogen signaling (either by HSD17B7 inhibition or with fulvestrant) and chemokine inflammation both decrease local E2 and prevent macrophage polarization. Overall, these findings suggest that chronic inflammation and hormonal disposition are critical contributors to the age-related nature of ER+ breast cancer development and growth and offer potential therapeutic insight to treat these patients. Translational Summary: We uncover the unique underpinnings establishing how the systemic host environment contributes to the aged breast tumor microenvironment, characterized by high local estradiol and chronic inflammation with immune dysregulation, and show that targeting avenues of estrogen conversion and chronic inflammation work to restore anti-tumor immunity.

2.
bioRxiv ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39386586

RESUMEN

MALT1 protease is an intracellular signaling molecule that promotes tumor progression via cancer cell-intrinsic and cancer cell-extrinsic mechanisms. MALT1 has been mostly studied in lymphocytes, and little is known about its role in tumor-associated macrophages. Here, we show that MALT1 plays a key role in glioblastoma (GBM)-associated macrophages. Mechanistically, GBM tumor cells induce a MALT1-NF-κB signaling axis within macrophages, leading to macrophage migration and polarization toward an immunosuppressive phenotype. Inactivation of MALT1 protease promotes transcriptional reprogramming that reduces migration and restores a macrophage "M1-like" phenotype. Preclinical in vivo analysis shows that MALT1 inhibitor treatment results in increased immuno-reactivity of GBM-associated macrophages and reduced GBM tumor growth. Further, the addition of MALT1 inhibitor to temozolomide reduces immunosuppression in the tumor microenvironment, which may enhance the efficacy of this standard-of-care chemotherapeutic. Together, our findings suggest that MALT1 protease inhibition represents a promising macrophage-targeted immunotherapeutic strategy for the treatment of GBM.

3.
Mol Biol Cell ; 35(10): ar133, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39196658

RESUMEN

Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type versus functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both two-dimensional and three-dimensional cell migration, while the SAP-domain function is important selectively for three-dimensional cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction with MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases versus primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human BC, justifying future development of specific small molecule inhibitors of the MRTF-SRF transcriptional complex as potential therapeutic agents in BC.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Forminas , Transactivadores , Humanos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Forminas/metabolismo , Femenino , Transactivadores/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Factor de Respuesta Sérica/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética
4.
J Clin Oncol ; 42(30): 3561-3569, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047219

RESUMEN

PURPOSE: MammaPrint (MP) determines distant metastatic risk and may improve patient selection for extended endocrine therapy (EET). This study examined MP in predicting extended letrozole therapy (ELT) benefit in patients with early-stage breast cancer (BC) from the NSABP B-42 trial. PATIENTS AND METHODS: MP was tested in 1,866 patients randomly assigned to receive ELT or placebo. The primary end point was distant recurrence (DR). Secondary end points were disease-free survival (DFS) and BC-free interval (BCFI). Tumors were classified as MP high risk (MP-HR) or low risk (MP-LR). MP-LR tumors were further classified as ultralow risk (MP-UL) or low non-ultralow risk (MP-LNUL). RESULTS: There was no statistically significant difference in ELT benefit on DR between MP-HR and MP-LR (interaction P = .38). MP-LR tumors (n = 1,160) exhibited a statistically significant 10-year benefit of 3.7% for DR (hazard ratio [HR], 0.43 [95% CI, 0.25 to 0.74]; P = .002), whereas MP-HR tumors (n = 706) exhibited a nonsignificant 2.4% benefit (HR, 0.65 [95% CI, 0.34 to 1.24]; P = .19). The 10-year ELT benefit was significant for DFS (7.8%) and BCFI (7.0%) for MP-LR tumors, whereas MP-HR tumors did not significantly benefit (interaction DFS: P = .015, BCFI: P = .006). In exploratory analysis, the 10-year ELT benefit was significant and more pronounced in MP-LNUL (n = 908) tumors: 4.0% for DR, 9.5% for DFS, and 7.9% for BCFI; the benefit in MP-UL (n = 252) tumors was not significant: 3% for DR, 1.8% for DFS, and 4.1% for BCFI. CONCLUSION: The primary hypothesis of predictive ability of MP on DR was not confirmed. However, the secondary outcomes demonstrated MP was predictive of ELT response and identified a subset of patients with early-stage hormone receptor-positive BC (MP-LR) with improved outcomes from ELT. These data could have important clinical implications in patient selection beyond clinical risk assessment for EET.


Asunto(s)
Neoplasias de la Mama , Letrozol , Nitrilos , Triazoles , Humanos , Letrozol/uso terapéutico , Letrozol/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Nitrilos/uso terapéutico , Triazoles/uso terapéutico , Triazoles/administración & dosificación , Persona de Mediana Edad , Supervivencia sin Enfermedad , Adulto , Anciano , Antineoplásicos/uso terapéutico , Valor Predictivo de las Pruebas , Inhibidores de la Aromatasa/uso terapéutico , Medición de Riesgo , Perfilación de la Expresión Génica
5.
Proc Natl Acad Sci U S A ; 121(31): e2322068121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042692

RESUMEN

Mixed invasive ductal and lobular carcinoma (MDLC) is a rare histologic subtype of breast cancer displaying both E-cadherin positive ductal and E-cadherin negative lobular morphologies within the same tumor, posing challenges with regard to anticipated clinical management. It remains unclear whether these distinct morphologies also have distinct biology and risk of recurrence. Our spatially resolved transcriptomic, genomic, and single-cell profiling revealed clinically significant differences between ductal and lobular tumor regions including distinct intrinsic subtype heterogeneity - e.g., MDLC with triple-negative breast cancer (TNBC) or basal ductal and estrogen receptor positive (ER+) luminal lobular regions, distinct enrichment of cell cycle arrest/senescence and oncogenic (ER and MYC) signatures, genetic and epigenetic CDH1 inactivation in lobular but not ductal regions, and single-cell ductal and lobular subpopulations with unique oncogenic signatures further highlighting intraregional heterogeneity. Altogether, we demonstrated that the intratumoral morphological/histological heterogeneity within MDLC is underpinned by intrinsic subtype and oncogenic heterogeneity which may result in prognostic uncertainty and therapeutic dilemma.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Mutación , Humanos , Femenino , Carcinoma Lobular/genética , Carcinoma Lobular/patología , Carcinoma Lobular/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patología , Carcinoma Ductal de Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/clasificación , Cadherinas/genética , Cadherinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Transcriptoma , Perfilación de la Expresión Génica/métodos
6.
bioRxiv ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38915645

RESUMEN

Mixed invasive ductal and lobular carcinoma (MDLC) is a rare histologic subtype of breast cancer displaying both E-cadherin positive ductal and E-cadherin negative lobular morphologies within the same tumor, posing challenges with regard to anticipated clinical management. It remains unclear whether these distinct morphologies also have distinct biology and risk of recurrence. Our spatially-resolved transcriptomic, genomic, and single-cell profiling revealed clinically significant differences between ductal and lobular tumor regions including distinct intrinsic subtype heterogeneity (e.g., MDLC with TNBC/basal ductal and ER+/luminal lobular regions), distinct enrichment of senescence/dormancy and oncogenic (ER and MYC) signatures, genetic and epigenetic CDH1 inactivation in lobular, but not ductal regions, and single-cell ductal and lobular sub-populations with unique oncogenic signatures further highlighting intra-regional heterogeneity. Altogether, we demonstrated that the intra-tumoral morphological/histological heterogeneity within MDLC is underpinned by intrinsic subtype and oncogenic heterogeneity which may result in prognostic uncertainty and therapeutic dilemma. Significance: MDLC displays both ductal and lobular tumor regions. Our multi-omic profiling approach revealed that these morphologically distinct tumor regions harbor distinct intrinsic subtypes and oncogenic features that may cause prognostic uncertainty and therapeutic dilemma. Thus histopathological/molecular profiling of individual tumor regions may guide clinical decision making and benefit patients with MDLC, particularly in the advanced setting where there is increased reliance on next generation sequencing.

7.
BMC Bioinformatics ; 25(1): 220, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898383

RESUMEN

Multi-omics sequencing is poised to revolutionize clinical care in the coming decade. However, there is a lack of effective and interpretable genome-wide modeling methods for the rational selection of patients for personalized interventions. To address this, we present iGenSig-Rx, an integral genomic signature-based approach, as a transparent tool for modeling therapeutic response using clinical trial datasets. This method adeptly addresses challenges related to cross-dataset modeling by capitalizing on high-dimensional redundant genomic features, analogous to reinforcing building pillars with redundant steel rods. Moreover, it integrates adaptive penalization of feature redundancy on a per-sample basis to prevent score flattening and mitigate overfitting. We then developed a purpose-built R package to implement this method for modeling clinical trial datasets. When applied to genomic datasets for HER2 targeted therapies, iGenSig-Rx model demonstrates consistent and reliable predictive power across four independent clinical trials. More importantly, the iGenSig-Rx model offers the level of transparency much needed for clinical application, allowing for clear explanations as to how the predictions are produced, how the features contribute to the prediction, and what are the key underlying pathways. We anticipate that iGenSig-Rx, as an interpretable class of multi-omics modeling methods, will find broad applications in big-data based precision oncology. The R package is available: https://github.com/wangxlab/iGenSig-Rx .


Asunto(s)
Genómica , Neoplasias , Humanos , Genómica/métodos , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión/métodos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Programas Informáticos , Multiómica
9.
Breast Cancer Res ; 26(1): 69, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650031

RESUMEN

BACKGROUND: We previously reported our phase Ib trial, testing the safety, tolerability, and efficacy of T-DM1 + neratinib in HER2-positive metastatic breast cancer patients. Patients with ERBB2 amplification in ctDNA had deeper and more durable responses. This study extends these observations with in-depth analysis of molecular markers and mechanisms of resistance in additional patients. METHODS: Forty-nine HER2-positive patients (determined locally) who progressed on-treatment with trastuzumab + pertuzumab were enrolled in this phase Ib/II study. Mutations and HER2 amplifications were assessed in ctDNA before (C1D1) and on-treatment (C2D1) with the Guardant360 assay. Archived tissue (TP0) and study entry biopsies (TP1) were assayed for whole transcriptome, HER2 copy number, and mutations, with Ampli-Seq, and centrally for HER2 with CLIA assays. Patient responses were assessed with RECIST v1.1, and Molecular Response with the Guardant360 Response algorithm. RESULTS: The ORR in phase II was 7/22 (32%), which included all patients who had at least one dose of study therapy. In phase I, the ORR was 12/19 (63%), which included only patients who were considered evaluable, having received their first scan at 6 weeks. Central confirmation of HER2-positivity was found in 83% (30/36) of the TP0 samples. HER2-amplified ctDNA was found at C1D1 in 48% (20/42) of samples. Patients with ctHER2-amp versus non-amplified HER2 ctDNA determined in C1D1 ctDNA had a longer median progression-free survival (PFS): 480 days versus 60 days (P = 0.015). Molecular Response scores were significantly associated with both PFS (HR 0.28, 0.09-0.90, P = 0.033) and best response (P = 0.037). All five of the patients with ctHER2-amp at C1D1 who had undetectable ctDNA after study therapy had an objective response. Patients whose ctHER2-amp decreased on-treatment had better outcomes than patients whose ctHER2-amp remained unchanged. HER2 RNA levels show a correlation to HER2 CLIA IHC status and were significantly higher in patients with clinically documented responses compared to patients with progressive disease (P = 0.03). CONCLUSIONS: The following biomarkers were associated with better outcomes for patients treated with T-DM1 + neratinib: (1) ctHER2-amp (C1D1) or in TP1; (2) Molecular Response scores; (3) loss of detectable ctDNA; (4) RNA levels of HER2; and (5) on-treatment loss of detectable ctHER2-amp. HER2 transcriptional and IHC/FISH status identify HER2-low cases (IHC 1+ or IHC 2+ and FISH negative) in these heavily anti-HER2 treated patients. Due to the small number of patients and samples in this study, the associations we have shown are for hypothesis generation only and remain to be validated in future studies. Clinical Trials registration NCT02236000.


Asunto(s)
Ado-Trastuzumab Emtansina , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de la Mama , Quinolinas , Receptor ErbB-2 , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Ado-Trastuzumab Emtansina/uso terapéutico , Persona de Mediana Edad , Quinolinas/uso terapéutico , Quinolinas/administración & dosificación , Anciano , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Biomarcadores de Tumor/genética , Mutación , Anciano de 80 o más Años , Trastuzumab/uso terapéutico , Trastuzumab/administración & dosificación , Resultado del Tratamiento , Metástasis de la Neoplasia
10.
JAMA Oncol ; 10(5): 603-611, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546612

RESUMEN

Importance: Biologic features may affect pathologic complete response (pCR) and event-free survival (EFS) after neoadjuvant chemotherapy plus ERBB2/HER2 blockade in ERBB2/HER2-positive early breast cancer (EBC). Objective: To define the quantitative association between pCR and EFS by intrinsic subtype and by other gene expression signatures in a pooled analysis of 3 phase 3 trials: CALGB 40601, NeoALTTO, and NSABP B-41. Design, Setting, and Participants: In this retrospective pooled analysis, 1289 patients with EBC received chemotherapy plus either trastuzumab, lapatinib, or the combination, with a combined median follow-up of 5.5 years. Gene expression profiling by RNA sequencing was obtained from 758 samples, and intrinsic subtypes and 618 gene expression signatures were calculated. Data analyses were performed from June 1, 2020, to January 1, 2023. Main Outcomes and Measures: The association of clinical variables and gene expression biomarkers with pCR and EFS were studied by logistic regression and Cox analyses. Results: In the pooled analysis, of 758 women, median age was 49 years, 12% were Asian, 6% Black, and 75% were White. Overall, pCR results were associated with EFS in the ERBB2-enriched (hazard ratio [HR], 0.45; 95% CI, 0.29-0.70; P < .001) and basal-like (HR, 0.19; 95% CI, 0.04-0.86; P = .03) subtypes but not in luminal A or B tumors. Dual trastuzumab plus lapatinib blockade over trastuzumab alone had a trend toward EFS benefit in the intention-to-treat population; however, in the ERBB2-enriched subtype there was a significant and independent EFS benefit of trastuzumab plus lapatinib vs trastuzumab alone (HR, 0.47; 95% CI, 0.27-0.83; P = .009). Overall, 275 of 618 gene expression signatures (44.5%) were significantly associated with pCR and 9 of 618 (1.5%) with EFS. The ERBB2/HER2 amplicon and multiple immune signatures were significantly associated with pCR. Luminal-related signatures were associated with lower pCR rates but better EFS, especially among patients with residual disease and independent of hormone receptor status. There was significant adjusted HR for pCR ranging from 0.45 to 0.81 (higher pCR) and 1.21-1.94 (lower pCR rate); significant adjusted HR for EFS ranged from 0.71 to 0.94. Conclusions and relevance: In patients with ERBB2/HER2-positive EBC, the association between pCR and EFS differed by tumor intrinsic subtype, and the benefit of dual ERBB2/HER2 blockade was limited to ERBB2-enriched tumors. Immune-activated signatures were concordantly associated with higher pCR rates and better EFS, whereas luminal signatures were associated with lower pCR rates.


Asunto(s)
Neoplasias de la Mama , Receptor ErbB-2 , Transcriptoma , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Perfilación de la Expresión Génica , Lapatinib/administración & dosificación , Lapatinib/uso terapéutico , Terapia Neoadyuvante , Estadificación de Neoplasias , Receptor ErbB-2/genética , Estudios Retrospectivos , Trastuzumab/uso terapéutico , Trastuzumab/administración & dosificación
11.
Clin Cancer Res ; 30(9): 1984-1991, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376912

RESUMEN

PURPOSE: BCI (H/I) has been shown to predict extended endocrine therapy (EET) benefit. We examined BCI (H/I) for EET benefit prediction in NSABP B-42, which evaluated extended letrozole therapy (ELT) in patients with hormone receptor-positive breast cancer after 5 years of ET. EXPERIMENTAL DESIGN: A stratified Cox model was used to analyze RFI as the primary endpoint, with DR, BCFI, and DFS as secondary endpoints. Because of a nonproportional effect of ELT on DR, time-dependent analyses were performed. RESULTS: The translational cohort included 2,178 patients (45% BCI (H/I)-High, 55% BCI (H/I)-Low). ELT showed an absolute 10-year RFI benefit of 1.6% (P = 0.10), resulting in an underpowered primary analysis (50% power). ELT benefit and BCI (H/I) did not show a significant interaction for RFI (BCI (H/I)-Low: 10 years absolute benefit 1.1% [HR, 0.70; 95% confidence interval (CI), 0.43-1.12; P = 0.13]; BCI (H/I)-High: 2.4% [HR, 0.83; 95% CI, 0.55-1.26; P = 0.38]; Pinteraction = 0.56). Time-dependent DR analysis showed that after 4 years, BCI (H/I)-High patients had significant ELT benefit (HR = 0.29; 95% CI, 0.12-0.69; P < 0.01), whereas BCI (H/I)-Low patients were less likely to benefit (HR, 0.68; 95% CI, 0.33-1.39; P = 0.29; Pinteraction = 0.14). Prediction of ELT benefit by BCI (H/I) was more apparent in the HER2- subset after 4 years (ELT-by-BCI (H/I) Pinteraction = 0.04). CONCLUSIONS: BCI (H/I)-High versus BCI (H/I)-Low did not show a statistically significant difference in ELT benefit for the primary endpoint (RFI). However, in time-dependent DR analysis, BCI (H/I)-High patients experienced statistically significant benefit from ELT after 4 years, whereas (H/I)-Low patients did not. Because BCI (H/I) has been validated as a predictive marker of EET benefit in other trials, additional follow-up may enable further characterization of BCI's predictive ability.


Asunto(s)
Inhibidores de la Aromatasa , Neoplasias de la Mama , Letrozol , Receptores de Estrógenos , Adulto , Anciano , Femenino , Humanos , Persona de Mediana Edad , Inhibidores de la Aromatasa/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Letrozol/uso terapéutico , Letrozol/administración & dosificación , Nitrilos/uso terapéutico , Pronóstico , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Resultado del Tratamiento , Triazoles/uso terapéutico , Triazoles/administración & dosificación
12.
J Clin Oncol ; 42(13): 1520-1530, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38315963

RESUMEN

PURPOSE: A combination of fluorouracil, leucovorin, and oxaliplatin (FOLFOX) is the standard for adjuvant therapy of resected early-stage colon cancer (CC). Oxaliplatin leads to lasting and disabling neurotoxicity. Reserving the regimen for patients who benefit from oxaliplatin would maximize efficacy and minimize unnecessary adverse side effects. METHODS: We trained a new machine learning model, referred to as the colon oxaliplatin signature (COLOXIS) model, for predicting response to oxaliplatin-containing regimens. We examined whether COLOXIS was predictive of oxaliplatin benefits in the CC adjuvant setting among 1,065 patients treated with 5-fluorouracil plus leucovorin (FULV; n = 421) or FULV + oxaliplatin (FOLFOX; n = 644) from NSABP C-07 and C-08 phase III trials. The COLOXIS model dichotomizes patients into COLOXIS+ (oxaliplatin responder) and COLOXIS- (nonresponder) groups. Eight-year recurrence-free survival was used to evaluate oxaliplatin benefits within each of the groups, and the predictive value of the COLOXIS model was assessed using the P value associated with the interaction term (int P) between the model prediction and the treatment effect. RESULTS: Among 1,065 patients, 526 were predicted as COLOXIS+ and 539 as COLOXIS-. The COLOXIS+ prediction was associated with prognosis for FULV-treated patients (hazard ratio [HR], 1.52 [95% CI, 1.07 to 2.15]; P = .017). The model was predictive of oxaliplatin benefits: COLOXIS+ patients benefited from oxaliplatin (HR, 0.65 [95% CI, 0.48 to 0.89]; P = .0065; int P = .03), but COLOXIS- patients did not (COLOXIS- HR, 1.08 [95% CI, 0.77 to 1.52]; P = .65). CONCLUSION: The COLOXIS model is predictive of oxaliplatin benefits in the CC adjuvant setting. The results provide evidence supporting a change in CC adjuvant therapy: reserve oxaliplatin only for COLOXIS+ patients, but further investigation is warranted.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias del Colon , Fluorouracilo , Leucovorina , Aprendizaje Automático , Oxaliplatino , Humanos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/mortalidad , Oxaliplatino/uso terapéutico , Oxaliplatino/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Fluorouracilo/uso terapéutico , Fluorouracilo/administración & dosificación , Leucovorina/uso terapéutico , Leucovorina/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Anciano , Compuestos Organoplatinos/uso terapéutico , Compuestos Organoplatinos/administración & dosificación , Quimioterapia Adyuvante , Adulto , Ensayos Clínicos Fase III como Asunto , Estadificación de Neoplasias
13.
Res Sq ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38077030

RESUMEN

Multi-omics sequencing is expected to become clinically routine within the next decade and transform clinical care. However, there is a paucity of viable and interpretable genome-wide modeling methods that can facilitate rational selection of patients for tailored intervention. Here we develop an integral genomic signature-based method called iGenSig-Rx as a white-box tool for modeling therapeutic response based on clinical trial datasets with improved cross-dataset applicability and tolerance to sequencing bias. This method leverages high-dimensional redundant genomic features to address the challenges of cross-dataset modeling, a concept similar to the use of redundant steel rods to reinforce the pillars of a building. Using genomic datasets for HER2 targeted therapies, the iGenSig-Rx model demonstrates stable predictive power across four independent clinical trials. More importantly, the iGenSig-Rx model offers the level of transparency much needed for clinical application, allowing for clear explanations as to how the predictions are produced, how the features contribute to the prediction, and what are the key underlying pathways. We expect that iGenSig-Rx as a class of biologically interpretable multi-omics modeling methods will have broad applications in big-data based precision oncology. The R package is available: https://github.com/wangxlab/iGenSig-Rx. NOTE: the Github website will be released upon publication and the R package is available for review through google drive: https://drive.google.com/drive/folders/1KgecmUoon9-h2Dg1rPCyEGFPOp28Ols3?usp=sharing.

14.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745587

RESUMEN

Breast cancer is categorized by the molecular and histologic presentation of the tumor, with the major histologic subtypes being No Special Type (NST) and Invasive Lobular Carcinoma (ILC). ILC are characterized by growth in a single file discohesive manner with stromal infiltration attributed to their hallmark pathognomonic loss of E-cadherin ( CDH1 ). Few ILC cell line models are available to researchers. Here we report the successful establishment and characterization of a novel ILC cell line, WCRC-25, from a metastatic pleural effusion from a postmenopausal Caucasian woman with metastatic ILC. WCRC-25 is an ER-negative luminal epithelial ILC cell line with both luminal and Her2-like features. It exhibits anchorage independent growth and haptotactic migration towards Collagen I. Sequencing revealed a CDH1 Q706* truncating mutation, together with mutations in FOXA1, CTCF, BRCA2 and TP53 , which were also seen in a series of metastatic lesions from the patient. Copy number analyses revealed amplification and deletion of genes frequently altered in ILC while optical genome mapping revealed novel structural rearrangements. RNA-seq analysis comparing the primary tumor, metastases and the cell line revealed signatures for cell cycle progression and receptor tyrosine kinase signaling. To assess targetability, we treated WCRC-25 with AZD5363 and Alpelisib confirming WCRC-25 as susceptible to PI3K/AKT signaling inhibition as predicted by our RNA sequencing analysis. In conclusion, we report WCRC-25 as a novel ILC cell line with promise as a valuable research tool to advance our understanding of ILC and its therapeutic vulnerabilities. Financial support: The work was in part supported by a Susan G Komen Leadership Grant to SO (SAC160073) and NCI R01 CA252378 (SO/AVL). AVL and SO are Komen Scholars, Hillman Foundation Fellows and supported by BCRF. This project used the UPMC Hillman Cancer Center and Tissue and Research Pathology/Pitt Biospecimen Core shared resource which is supported in part by award P30CA047904. This research was also supported in part by the University of Pittsburgh Center for Research Computing, RRID:SCR_022735, through the resources provided. Specifically, this work used the HTC cluster, which is supported by NIH award number S10OD028483. Finally, partial support was provided by the Magee-Womens Research Institute and Foundation, The Shear Family Foundation, and The Metastatic Breast Cancer Network.

15.
bioRxiv ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37662409

RESUMEN

Background: Acral melanoma (AM) has distinct characteristics as compared to cutaneous melanoma and exhibits poor response to immune checkpoint inhibitors (ICI). Tumor-intrinsic mechanisms of immune exclusion have been identified in many cancers but less studied in AM. Methods: We characterized clinically annotated tumors from patients diagnosed with AM at our institution in correlation with ICI response using whole transcriptome RNAseq, whole exome sequencing, CD8 immunohistochemistry, and multispectral immunofluorescence imaging. A defined interferon-γ-associated T cell-inflamed gene signature was used to categorize tumors into non-T cell-inflamed and T cell-inflamed phenotypes. In combination with AM tumors from two published studies, we systematically assessed the immune landscape of AM and detected differential gene expression and pathway activation in a non-T cell-inflamed tumor microenvironment (TME). Two single-cell(sc) RNAseq AM cohorts and 11 bulk RNAseq cohorts of various tumor types were used for independent validation on pathways associated with lack of ICI response. In total, 892 specimens were included in this study. Results: 72.5% of AM tumors showed low expression of the T cell-inflamed gene signature, with 23.9% of total tumors categorized as the non-T cell-inflamed phenotype. Patients of low CD3 + CD8 + PD1 + intratumoral T cell density showed poor prognosis. We identified 11 oncogenic pathways significantly upregulated in non-T cell-inflamed relative to T cell-inflamed TME shared across all three acral cohorts (MYC, HGF, MITF, VEGF, EGFR, SP1, ERBB2, TFEB, SREBF1, SOX2, and CCND1). scRNAseq analysis revealed that tumor cell-expressing pathway scores were significantly higher in low vs high T cell-infiltrated AM tumors. We further demonstrated that the 11 pathways were enriched in ICI non-responders compared to responders across cancers, including acral melanoma, cutaneous melanoma, triple-negative breast cancer, and non-small cell lung cancer. Pathway activation was associated with low expression of interferon stimulated genes, suggesting suppression of antigen presentation. Across the 11 pathways, fatty acid synthase and CXCL8 were unifying downstream target molecules suggesting potential nodes for therapeutic intervention. Conclusions: A unique set of pathways is associated with immune exclusion and ICI resistance in AM. These data may inform immunotherapy combinations for immediate clinical translation.

16.
J Biol Chem ; 299(8): 105044, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451478

RESUMEN

Overexpression of actin-binding protein profilin-1 (Pfn1) correlates with advanced disease features and adverse clinical outcome of patients with clear cell renal carcinoma, the most prevalent form of renal cancer. We previously reported that Pfn1 is predominantly overexpressed in tumor-associated vascular endothelial cells in human clear cell renal carcinoma. In this study, we combined in vivo strategies involving endothelial cell-specific depletion and overexpression of Pfn1 to demonstrate a role of vascular endothelial Pfn1 in promoting tumorigenicity and enabling progressive growth and metastasis of renal carcinoma cells in a syngeneic orthotopic mouse model of kidney cancer. We established an important role of endothelial Pfn1 in tumor angiogenesis and further identified endothelial Pfn1-dependent regulation of several pro- (VEGF, SERPINE1, CCL2) and anti-angiogenic factors (platelet factor 4) in vivo. Endothelial Pfn1 overexpression increases tumor infiltration by macrophages and concomitantly diminishes tumor infiltration by T cells including CD8+ T cells in vivo, correlating with the pattern of endothelial Pfn1-dependent changes in tumor abundance of several prominent immunomodulatory cytokines. These data were also corroborated by multiplexed quantitative immunohistochemistry and immune deconvolution analyses of RNA-seq data of clinical samples. Guided by Upstream Regulator Analysis of tumor transcriptome data, we further established endothelial Pfn1-induced Hif1α elevation and suppression of STAT1 activation. In conclusion, this study demonstrates for the first time a direct causal relationship between vascular endothelial Pfn1 dysregulation, immunosuppressive tumor microenvironment, and disease progression with mechanistic insights in kidney cancer. Our study also provides a conceptual basis for targeting Pfn1 for therapeutic benefit in kidney cancer.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Profilinas , Microambiente Tumoral , Animales , Humanos , Ratones , Carcinoma de Células Renales/genética , Células Endoteliales/metabolismo , Neoplasias Renales/genética , Profilinas/genética , Profilinas/metabolismo , Progresión de la Enfermedad
18.
bioRxiv ; 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945402

RESUMEN

Merosin-deficient congenital muscular dystrophy (MDC1A) is an autosomal recessive disorder caused by mutations in the LAMA2 gene, resulting in a defective form of the extracellular matrix protein laminin-α2 (LAMA2). Individuals diagnosed with MDC1A exhibit progressive muscle wasting and declining neuromuscular functions. No treatments for this disorder are currently available. We previously showed that postnatal Lama1 upregulation, achieved through CRISPR activation (CRISPRa), compensates for Lama2 deficiency and prevents neuromuscular pathophysiology in a mouse model of MDC1A. In this study, we assessed the feasibility of upregulating human LAMA1 as a potential therapeutic strategy for individuals with MDC1A, regardless of their mutations. We hypothesized that CRISPRa-mediated upregulation of human LAMA1 would compensate for the lack of LAMA2 and rescue cellular abnormalities in MDC1A fibroblasts. Global transcriptomic and pathway enrichment analyses of fibroblasts collected from individuals carrying pathogenic LAMA2 mutations, compared with healthy controls, indicated higher expression of transcripts encoding proteins that contribute to wound healing, including Transforming Growth Factor-ß (TGF-ß) and Fibroblast Growth Factor (FGF). These findings were supported by wound-healing assays indicating that MDC1A fibroblasts migrated significantly more rapidly than the controls. Subsequently, we treated the MDC1A fibroblasts with SadCas9-2XVP64 and sgRNAs targeting the LAMA1 promoter. We observed robust LAMA1 expression, which was accompanied by significant decreases in cell migration and expression of FGFR2, TGF-ß2, and ACTA2, which are involved in the wound-healing mechanism in MDC1A fibroblasts. Collectively, our data suggest that CRISPRa-mediated LAMA1 upregulation may be a feasible mutation-independent therapeutic approach for MDC1A. This strategy might be adapted to address other neuromuscular diseases and inherited conditions in which strong compensatory mechanisms have been identified.

19.
Nat Cancer ; 4(4): 516-534, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36927792

RESUMEN

T cell-centric immunotherapies have shown modest clinical benefit thus far for estrogen receptor-positive (ER+) breast cancer. Despite accounting for 70% of all breast cancers, relatively little is known about the immunobiology of ER+ breast cancer in women with invasive ductal carcinoma (IDC) and invasive lobular carcinoma (ILC). To investigate this, we performed phenotypic, transcriptional and functional analyses for a cohort of treatment-naive IDC (n = 94) and ILC (n = 87) tumors. We show that macrophages, and not T cells, are the predominant immune cells infiltrating the tumor bed and the most transcriptionally diverse cell subset between IDC and ILC. Analysis of cellular neighborhoods revealed an interplay between macrophages and T cells associated with longer disease-free survival in IDC but not ILC. Our datasets provide a rich resource for further interrogation into immune cell dynamics in ER+ IDC and ILC and highlight macrophages as a potential target for ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Femenino , Humanos , Carcinoma Lobular/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/tratamiento farmacológico , Resultado del Tratamiento , Supervivencia sin Enfermedad , Microambiente Tumoral
20.
Clin Cancer Res ; 29(8): 1569-1581, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36730339

RESUMEN

PURPOSE: In KATHERINE, adjuvant T-DM1 reduced risk of disease recurrence or death by 50% compared with trastuzumab in patients with residual invasive breast cancer after neoadjuvant therapy (NAT) comprised of HER2-targeted therapy and chemotherapy. This analysis aimed to identify biomarkers of response and differences in biomarker expression before and after NAT. EXPERIMENTAL DESIGN: Exploratory analyses investigated the relationship between invasive disease-free survival (IDFS) and HER2 protein expression/gene amplification, PIK3CA hotspot mutations, and gene expression of HER2, PD-L1, CD8, predefined immune signatures, and Prediction Analysis of Microarray 50 intrinsic molecular subtypes, classified by Absolute Intrinsic Molecular Subtyping. HER2 expression on paired pre- and post-NAT samples was examined. RESULTS: T-DM1 appeared to improve IDFS versus trastuzumab across most biomarker subgroups, except the HER2 focal expression subgroup. High versus low HER2 gene expression in residual disease was associated with worse outcomes with trastuzumab [HR, 2.02; 95% confidence interval (CI), 1.32-3.11], but IDFS with T-DM1 was independent of HER2 expression level (HR, 1.01; 95% CI, 0.56-1.83). Low PD-L1 gene expression in residual disease was associated with worse outcomes with trastuzumab (HR, 0.66; 95% CI, 0.44-1.00), but not T-DM1 (HR, 1.05; 95% CI, 0.59-1.87). PIK3CA mutations were not prognostic. Increased variability in HER2 expression was observed in post-NAT versus paired pre-NAT samples. CONCLUSIONS: T-DM1 appears to overcome HER2 resistance. T-DM1 benefit does not appear dependent on immune activation, but these results do not rule out an influence of the tumor immune microenvironment on the degree of response.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Trastuzumab/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Antígeno B7-H1/genética , Terapia Neoadyuvante , Receptor ErbB-2/metabolismo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Ado-Trastuzumab Emtansina/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...