Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Physiol ; 601(21): 4737-4749, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37777993

RESUMEN

Many neurons of the mammalian master circadian oscillator in the suprachiasmatic nuclei (SCN) respond to light pulses with irradiance-dependent changes in firing. Here, we set out to better understand this irradiance coding ability by considering how the SCN tracks more continuous changes in irradiance at both population and single unit level. To this end, we recorded extracellular activity in the SCN of anaesthetised mice presented with up + down irradiance staircase stimuli covering moonlight to daylight conditions and incorporating epochs with steady light or superimposed higher frequency modulations (temporal white noise (WN) and frequency/contrast chirps). Single unit activity was extracted by spike sorting. The population response of SCN units to this stimulus was a progressive increase in firing rate at higher irradiances. This relationship was symmetrical for up vs. down phases of the ramp in the presence of white noise or chirps but exhibited hysteresis for steady light, with firing systematically higher during increasing irradiance. Single units also showed a monotonic relationship between firing and irradiance but exhibited diversity not only in response polarity (increases vs. decreases in firing), but also in the sensitivity (EC50 ) and slope of fitted functions. These data show that individual SCN neurons exhibit monotonic relationships between irradiance and firing rate but differ in the irradiance range over which they respond. This property may help the SCN to encode the large differences in irradiance found in nature using neurons with a constrained range of firing rates. KEY POINTS: Daily changes in environmental light (irradiance) entrain the suprachiasmatic nucleus (SCN) circadian clock. The mouse SCN shows graded increases in neurophysiological activity with light pulses of increasing irradiance. We show that this monotonic relationship between firing rate and irradiance is retained at population and single unit level when probed with more naturalistic staircase increases and decreases in irradiance. The irradiance response is more reliable in the presence of ongoing higher temporal frequency modulations in light intensity than under steady light. Single units varied in sensitivity allowing the population to cover a wide range of irradiances. Irradiance coding in the SCN has characteristics of a sparse code with individual neurons tracking different portions of the natural irradiance range. This property may address the challenge of encoding a 109 -fold day:night difference in irradiance within the constrained range of firing rates available to individual neurons.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Ratones , Animales , Ritmo Circadiano/fisiología , Núcleo Supraquiasmático/fisiología , Neuronas/fisiología , Luz , Mamíferos
2.
J Physiol ; 599(5): 1631-1650, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33428215

RESUMEN

KEY POINTS: Neurophysiological activity in the subcortical visual system fluctuates in both infra-slow and fast oscillatory ranges, but the level of co-occurrence and potential functional interaction of these rhythms is unknown. Analysing dark-adapted spontaneous activity in the mouse subcortical visual system, we find that these two types of oscillation interact uniquely through a population of neurons expressing both rhythms. Genetic ablation of rod/cone signalling potentiates infra-slow and abolishes fast beta/gamma oscillations while genetic ablation of melanopsin substantially diminishes the interaction between these two rhythms. Our results indicate that in an intact visual system the phase of infra-slow modulates fast beta/gamma oscillations. Thus one possible impact of infra-slow oscillations in vision is to guide visual processing by interacting with fast narrowband oscillations. ABSTRACT: Infra-slow (<0.02 Hz) and fast beta/gamma (20-100 Hz) oscillations in neurophysiological activity have been widely found in the subcortical visual system. While it is well established that fast beta/gamma oscillations are involved in visual processing, the role (if any) of infra-slow oscillations is currently unknown. One possibility is that infra-slow oscillations exert influence by modulating the amplitude of fast oscillations, yet the extent to which these different oscillations arise independently and interact remains unknown. We addressed these questions by recording in vivo spontaneous activity from the subcortical visual system of visually intact mice, and animals whose retinal network was disrupted by advanced rod/cone degeneration (rd/rd cl) or melanopsin loss (Opn4-/- ). We found many neurons expressing only one type of oscillation, and indeed fast oscillations were absent in rd/rd cl. Conversely, neurons co-expressing the two oscillations were also common, and were encountered more often than expected by chance in visually intact but not Opn4-/- mice. Finally, where they co-occurred we found that beta/gamma amplitude was modulated by the infra-slow rhythm. Our data thus reveal that: (1) infra-slow and beta-gamma oscillations are separable phenomena; and (2) that they actively co-occur in a subset of neurones in which the phase of infra-slow oscillations defines beta-gamma oscillations amplitude. These findings suggest that infra-slow oscillations could influence vision by modulating beta-gamma oscillations, and raise the possibility that disruptions in these oscillatory behaviours contribute to vision dysfunction in retinal dystrophy.


Asunto(s)
Retina , Visión Ocular , Animales , Ratones , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...