Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 55(1): 699-710, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253975

RESUMEN

Weissella cibaria W21, W25, and W42 strains have previously been characterized for their antagonism against a range of foodborne pathogens. However, prior to their use as protective agents, further analyses such as their safety and in situ activity are needed. The safety of W. cibaria W21, W25, and W42 strains was predicted in silico and confirmed experimentally. Analyses of their genomes using appropriate software did not reveal any acquired antimicrobial resistance genes, nor mobile genetic elements (MGEs). The survival of each strain was determined in vitro under conditions mimicking the gastrointestinal tract (GIT). Thus, hemolysis analysis was performed using blood agar and the cytotoxicity assay was determined using a mixture of two cell lines (80% of Caco-2 and 20% of HT-29). We also performed the inflammation and anti-inflammation capabilities of these strains using the promonocytic human cell line U937. The Weissella strains were found to be haemolysis-negative and non-cytotoxic and did not induce any inflammation. Furthermore, these strains adhered tightly to intestinal Caco-2 cell-lines and exerted in situ anti-proliferative activity against methicillin-resistant Staphylococcus aureus (strain MRSA S1) and Escherichia coli 181, a colistin-resistant strain. However, the W. cibaria strains showed low survival rate under simulated GIT conditions in vitro. The unusual LAB-strains W. cibaria strains W21, W25, and W42 are safe and endowed with potent antibacterial activities. These strains are therefore good candidates for industrial applications. The results of this study provide a characterization and insights into Weissella strains, which are considered unusual LAB, but which prompt a growing interest in their bio-functional properties and their potential industrial applications.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Weissella , Humanos , Weissella/genética , Weissella/metabolismo , Brasil , Células CACO-2 , Granjas , Antibacterianos/farmacología , Antibacterianos/metabolismo , Inflamación
2.
Sci Rep ; 13(1): 22870, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38129448

RESUMEN

A mutant deficient in polynucleotide phosphorylase (PNPase) activity was previously constructed in Enterococcus faecalis 14; a strain producing a leaderless two-peptide enterocin DD14 (EntDD14). Here, we examined the impact of the absence of PNPase on the expression and synthesis of EntDD14, at the transcriptional and functional levels. As result, EntDD14 synthesis augmented in line with the growth curve, reaching a two- to fourfold increase in the ΔpnpA mutant compared to the E. faecalis 14 wild-type strain (WT). EntDD14 synthesis has reached its highest level after 9 h of growth in both strains. Notably, high expression level of the ddABCDEFGHIJ cluster was registered in ΔpnpA mutant. Transcriptional and in silico analyses support the existence of ddAB and ddCDEFGHIJ independent transcripts, and analysis of the fate of ddAB and ddCDEFGHIJ mRNAs indicated that the differences in mRNA levels and the high EntDD14 activity are likely due to a better stability of the two transcripts in the ΔpnpA mutant, which should result in a higher translation efficiency of the ddAB EntDD14 structural genes and their other protein determinants. Consequently, this study shows a potential link between the mRNA stability and EntDD14 synthesis, secretion and immunity in a genetic background lacking PNPase.


Asunto(s)
Bacteriocinas , Bacteriocinas/genética , Bacteriocinas/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Hidrocarburos Aromáticos con Puentes/metabolismo , Estabilidad del ARN/genética
3.
Front Plant Sci ; 14: 1204016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528984

RESUMEN

One of the biggest challenges for a more widespread utilization of plant fibers is to better understand the different molecular factors underlying the variability in fineness and mechanical properties of both elementary and scutched fibers. Accordingly, we analyzed genome-wide transcription profiling from bast fiber bearing tissues of seven different flax varieties (4 spring, 2 winter fiber varieties and 1 winter linseed) and identified 1041 differentially expressed genes between varieties, of which 97 were related to cell wall metabolism. KEGG analysis highlighted a number of different enriched pathways. Subsequent statistical analysis using Partial Least-Squares Discriminant Analysis showed that 73% of the total variance was explained by the first 3 X-variates corresponding to 56 differentially expressed genes. Calculation of Pearson correlations identified 5 genes showing a strong correlation between expression and morphometric data. Two-dimensional gel proteomic analysis on the two varieties showing the most discriminant and significant differences in morphometrics revealed 1490 protein spots of which 108 showed significant differential abundance. Mass spectrometry analysis successfully identified 46 proteins representing 32 non-redundant proteins. Statistical clusterization based on the expression level of genes corresponding to the 32 proteins showed clear discrimination into three separate clusters, reflecting the variety type (spring-/winter-fiber/oil). Four of the 32 proteins were also highly correlated with morphometric features. Examination of predicted functions for the 9 (5 + 4) identified genes highlighted lipid metabolism and senescence process. Calculation of Pearson correlation coefficients between expression data and retted fiber mechanical measurements (strength and maximum force) identified 3 significantly correlated genes. The genes were predicted to be connected to cell wall dynamics, either directly (Expansin-like protein), or indirectly (NAD(P)-binding Rossmann-fold superfamily protein). Taken together, our results have allowed the identification of molecular actors potentially associated with the determination of both in-planta fiber morphometrics, as well as ex-planta fiber mechanical properties, both of which are key parameters for elementary fiber and scutched fiber quality in flax.

4.
Front Plant Sci ; 13: 878272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720601

RESUMEN

Rhamnolipids (RLs), glycolipids biosynthesized by the Pseudomonas and Burkholderia genera, are known to display various activities against a wide range of pathogens. Most previous studies on RLs focused on their direct antimicrobial activity, while only a few reports described the mechanisms by which RLs induce resistance against phytopathogens and the related fitness cost on plant physiology. Here, we combined transcriptomic and metabolomic approaches to unravel the mechanisms underlying RL-induced resistance in wheat against the hemibiotrophic fungus Zymoseptoria tritici, a major pathogen of this crop. Investigations were carried out by treating wheat plants with a bioinspired synthetic mono-RL with a 12-carbon fatty acid tail, dodecanoyl α/ß-L-rhamnopyranoside (Rh-Est-C12), under both infectious and non-infectious conditions to examine its potential wheat defense-eliciting and priming bioactivities. Whereas, Rh-Est-C12 conferred to wheat a significant protection against Z. tritici (41% disease severity reduction), only a slight effect of this RL on wheat leaf gene expression and metabolite accumulation was observed. A subset of 24 differentially expressed genes (DEGs) and 11 differentially accumulated metabolites (DAMs) was scored in elicitation modalities 2, 5, and 15 days post-treatment (dpt), and 25 DEGs and 17 DAMs were recorded in priming modalities 5 and 15 dpt. Most changes were down-regulations, and only a few DEGs and DAMs associated with resistance to pathogens were identified. Nevertheless, a transient early regulation in gene expression was highlighted at 2 dpt (e.g., genes involved in signaling, transcription, translation, cell-wall structure, and function), suggesting a perception of the RL by the plant upon treatment. Further in vitro and in planta bioassays showed that Rh-Est-C12 displays a significant direct antimicrobial activity toward Z. tritici. Taken together, our results suggest that Rh-Est-C12 confers protection to wheat against Z. tritici through direct antifungal activity and, to a lesser extent, by induction of plant defenses without causing major alterations in plant metabolism. This study provides new insights into the modes of action of RLs on the wheat-Z. tritici pathosystem and highlights the potential interest in Rh-Est-C12, a low-fitness cost molecule, to control this pathogen.

5.
Gene ; 833: 146610, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35609794

RESUMEN

Enterococci are lactic acid bacteria (LAB) used as starters and probiotics, delineating their positive attributes. Nevertheless, enterococci can be culprit for thousands of infectious diseases, including urinary tract infections, bacteremia and endocarditis. Here, we aim to determine the impact of polynucleotide phosphorylase (PNPase) in the biology of Enterococcus faecalis 14; a human isolate from meconium. Thus, a mutant strain deficient in PNPase synthesis, named ΔpnpA mutant, was genetically obtained. After that, a transcriptomic study revealed a set of 244 genes differentially expressed in the ΔpnpA mutant compared with the wild-type strain, when exploiting RNAs extracted from these strains after 3 and 6 h of growth. Differentially expressed genes include those involved in cell wall synthesis, adhesion, biofilm formation, bacterial competence and conjugation, stress response, transport, DNA repair and many other functions related to the primary and secondary metabolism of the bacteria. Moreover, the ΔpnpA mutant showed an altered cell envelope ultrastructure compared with the WT strain, and is also distinguished by a strong adhesion capacity on eukaryotic cell as well as a high proteolytic activity. This study, which combines genetics, physiology and transcriptomics enabled us to show further biological functions that could be directly or indirectly controlled by the PNPase in E. faecalis 14.


Asunto(s)
Enterococcus faecalis , Infecciones Urinarias , Adhesión Bacteriana/genética , Pared Celular/genética , Pared Celular/metabolismo , Reparación del ADN , Enterococcus faecalis/genética , Humanos , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo
6.
Nutrients ; 14(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35267932

RESUMEN

Industrial chicory has been the subject of numerous studies, most of which provide clinical observations on its health effects. Whether it is the roasted root, the flour obtained from the roots or the different classes of molecules that enter into the composition of this plant, understanding the molecular mechanisms of action on the human organism remains incomplete. In this study, we were interested in three molecules or classes of molecules present in chicory root: fructose, chlorogenic acids, and sesquiterpene lactones. We conducted experiments on the murine model and performed a nutrigenomic analysis, a metabolic hormone assay and a gut microbiota analysis, associated with in vitro observations for different responses. We have highlighted a large number of effects of all these classes of molecules that suggest a pro-apoptotic activity, an anti-inflammatory, antimicrobial, antioxidant, hypolipidemic and hypoglycemic effect and also an important role in appetite regulation. A significant prebiotic activity was also identified. Fructose seems to be the most involved in these activities, contributing to approximately 83% of recorded responses, but the other classes of tested molecules have shown a specific role for these different effects, with an estimated contribution of 23-24%.


Asunto(s)
Cichorium intybus , Animales , Antiinflamatorios/metabolismo , Cichorium intybus/metabolismo , Ácido Clorogénico/metabolismo , Alimentos Funcionales , Humanos , Ratones , Prebióticos/análisis
7.
Microorganisms ; 10(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35208769

RESUMEN

Weissella is a genus containing Gram-positive, heterofermentative bacteria belonging to the lactic acid bacteria (LAB) group. These bacteria are endowed with promising technological and antimicrobial attributes. Weissella cibaria W25 was isolated from a dairy environment where raw milk cheeses are produced. Therefore, we sequenced and assembled the W25 draft genome sequence, which consists of 41 contigs totaling ~2.4 Mbp, with a G + C content of 45.04%. Then we carried out a comprehensive comparative genomic analysis with W. cibaria 110, known to produce the weissellicin 110 bacteriocin, and four other non-bacteriocin-producing W. cibaria strains.

8.
Front Plant Sci ; 13: 1074447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36777540

RESUMEN

Plant immunity induction with natural biocontrol compounds is a valuable and promising ecofriendly tool that fits with sustainable agriculture and healthy food. Despite the agroeconomic significance of wheat, the mechanisms underlying its induced defense responses remain obscure. We reveal here, using combined transcriptomic, metabolomic and cytologic approach, that the lipopeptide mycosubtilin from the beneficial bacterium Bacillus subtilis, protects wheat against Zymoseptoria tritici through a dual mode of action (direct and indirect) and that the indirect one relies mainly on the priming rather than on the elicitation of plant defense-related mechanisms. Indeed, the molecule primes the expression of 80 genes associated with sixteen functional groups during the early stages of infection, as well as the accumulation of several flavonoids during the period preceding the fungal switch to the necrotrophic phase. Moreover, genes involved in abscisic acid (ABA) biosynthesis and ABA-associated signaling pathways are regulated, suggesting a role of this phytohormone in the indirect activity of mycosubtilin. The priming-based bioactivity of mycosubtilin against a biotic stress could result from an interaction of the molecule with leaf cell plasma membranes that may mimic an abiotic stress stimulus in wheat leaves. This study provides new insights into induced immunity in wheat and opens new perspectives for the use of mycosubtilin as a biocontrol compound against Z. tritici.

9.
Microb Ecol ; 82(4): 1020-1029, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32975677

RESUMEN

The composition of the vaginal microbiota is a key element for maintaining gynecological and reproductive health. With the aim of obtaining an accurate overview of the vaginal microbiota of Algerian women, in terms of their age and ethnic group, we conducted a 16S rRNA gene targeted metagenomic analysis of 100 vaginal samples taken from healthy childbearing and menopausal women. These data were used to establish the pattern of the vaginal microbiota during reproductive and postreproductive phases. Hormone levels were correlated to changes in microbial composition for menopausal women. The ethnic comparison revealed a particular microbiota profile for Algerian women, with a dominance of CST III and CST I. A rapid qPCR method developed by the authors was successfully used to identify the vaginal bacterial pattern for a customized gynecological management.


Asunto(s)
Etnicidad , Microbiota , Femenino , Humanos , Lactobacillus/genética , ARN Ribosómico 16S/genética , Vagina
10.
Artículo en Inglés | MEDLINE | ID: mdl-32671042

RESUMEN

Enterocin DD14 (EntDD14) is a two-peptide leaderless bacteriocin produced by Enterococcus faecalis 14, a strain previously isolated from meconium. EntDD14 has a strong antibacterial activity against Gram-positive bacteria. Leaderless bacteriocins, unlike bacteriocins with leader peptides, are immediately active after their translation, and a producing strain has then to develop specific mechanisms to protect both intra and extracellular compartments. The in silico analysis of Ent. faecalis 14 genome allowed to locate downstream of structural ddAB genes, 8 other adjacent genes, designed ddCDEFGHIJ, which collectively may form three operons. To gain insights on immunity mechanisms of Ent. faecalis 14, mutant strains knocked out in ddAB genes encoding bacteriocin precursor peptides (Δbac) and/or ABC transporter (ΔddI) of EntDD14 were constructed and characterized. Importantly, Δbac mutant strains, from which structural ddAB genes were deleted, resulted unable to produce EntDD14 and sensitive to exogenous EntDD14 showing their involvement in the Ent. faecalis 14 immunity system. Moreover, the sensitivity of Δbac mutants appeared not to be associated with the down-regulation of ddCDEFGHIJ gene expression since they were similarly expressed in both Δbac and wild-type strains during the log phase while they were found significantly down-regulated in the Δbac mutant strain after 24 h of growth. Data gathered from this study suggest also the implication of the ABC transporter (ddHIJ) in the active export of EntDD14 but ruled-out its involvement in the primary self-immunity system. Interestingly, non-bacteriocin producing Ent. faecalis JH2-2 cells transformed with ddAB, or ddAB plus genes encoding the ABC transporter (ddAB-HIJ) did not produce EntDD14 and remained sensitive to its action. Of note, trans-complementation of the Δbac mutant strain with these constructions allowed to recover the WT phenotype. To the best of our knowledge, this is the first study delineating the role of the intracellular two-peptide leaderless bacteriocins in their self-immunity.

11.
FASEB J ; 34(9): 12615-12633, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32729971

RESUMEN

Although it is known that zinc has several beneficial roles in the context of gut inflammation, the underlying mechanisms have not been extensively characterized. Zinc (Zn) is known to be the primary physiological inducer of the expression of the metallothionein (MT) superfamily of small stress-responsive proteins. The expression of MTs in various tissues is induced or enhanced (including the gastrointestinal tract (GIT)) by a variety of stimuli, including infection and inflammation. However, the MTs' exact role in inflammation is still subject to debate. In order to establish whether or not MTs are the sole vectors in the Zn-based modulation of intestinal inflammation, we used transcriptomic and metagenomic approaches to assess the potential effect of dietary Zn, the mechanisms underlying the MTs' beneficial effects, and the induction of previously unidentified mediators. We found that the expression of endogenous MTs in the mouse GIT was stimulated by an optimized dietary supplementation with Zn. The protective effects of dietary supplementation with Zn were then evaluated in mouse models of chemically induced colitis. The potential contribution of MTs and other pathways was explored via transcriptomic analyses of the ileum and colon in Zn-treated mice. The microbiota's role was also assessed via fecal 16S rRNA sequencing. We found that high-dose dietary supplementation with Zn induced the expression of MT-encoding genes in the colon of healthy mice. We next demonstrated that the Zn diet significantly protected mice in the two models of induced colitis. When comparing Zn-treated and control mice, various genes were found to be differentially expressed in the colon and the ileum. Finally, we found that Zn supplementation did not modify the overall structure of the fecal microbiota, with the exception of (i) a significant increase in endogenous Clostridiaceae, and (ii) some subtle but specific changes at the family and genus levels. Our results emphasize the beneficial effects of excess dietary Zn on the prevention of colitis and inflammatory events in mouse models. The main underlying mechanisms were driven by the multifaceted roles of MTs and the other potential molecular mediators highlighted by our transcriptomic analyses although we cannot rule out contributions by other factors from the host and/or the microbiota.


Asunto(s)
Colitis , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/tratamiento farmacológico , Metalotioneína/metabolismo , Transcriptoma , Zinc/farmacología , Animales , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/microbiología , Colon/efectos de los fármacos , Colon/metabolismo , Suplementos Dietéticos , Heces/microbiología , Femenino , Íleon/efectos de los fármacos , Íleon/metabolismo , Ratones , Ratones Endogámicos BALB C , Zinc/administración & dosificación
12.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629918

RESUMEN

The production of antimicrobial molecules often involves complex biological pathways. This study aimed at understanding the metabolic and physiological networks of enterocin EntDD14-associated function, in the bacteriocinogenic strain, Enterococcus faecalis 14. A global and comparative transcriptomic study was carried out on E. faecalis 14 and its isogenic mutant Δbac, inactivated in genes coding for EntDD14. The in vitro ability to form biofilm on polystyrene plates was assessed by the crystal violet method, while the cytotoxicity on human colorectal adenocarcinoma Caco-2 cells was determined by the Cell Counting Kit-8. Transcriptomic data revealed that 71 genes were differentially expressed in both strains. As expected, genes coding for EntDD14 were downregulated in the Δbac mutant, whereas the other 69 genes were upregulated. Upregulated genes were associated with phage-related chromosomal islands, biofilm formation capability, resistance to environmental stresses, and metabolic reprogramming. Interestingly, the Δbac mutant showed an improved bacterial growth, a high capacity to form biofilm on inanimate surfaces and a very weak cytotoxicity level. These multiple metabolic rearrangements delineate a new line of defense to counterbalance the loss of EntDD14.


Asunto(s)
Bacteriocinas/biosíntesis , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Antibacterianos/metabolismo , Antiinfecciosos/metabolismo , Proteínas Bacterianas/metabolismo , Bacteriocinas/genética , Biopelículas , Hidrocarburos Aromáticos con Puentes/metabolismo , Hidrocarburos Aromáticos con Puentes/farmacología , Células CACO-2 , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Pruebas de Sensibilidad Microbiana , Biosíntesis de Péptidos/genética , Transcriptoma/genética
13.
J Agric Food Chem ; 66(25): 6439-6449, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29873488

RESUMEN

The objectives of this work are to address the prebiotic effects of chicory ( Cichorium intybus) together with its possible role in appetite control. We compared nine chicory genotypes in order to determine if variations in the content of metabolites in the roasted roots would lead to modifications in release of satiety hormones and in composition of gut microbiota. To this aim, a 5-week dietary-intervention study was achieved using mice fed with distinct chicory-based preparations. A 16S rRNA gene-based metagenetic analysis of fecal microbiota was performed. In vitro gastrointestinal digestions were performed in order to study the effect of chicory intestinal digests on gut hormone regulation in enteroendocrine cells. Firmicutes/Bacteroidetes ratio and gut bacterial groups, such as Alloprevotella, Blautia, Alistipes, and Oscillibacter, were found to be modulated by chicory. On the other hand, CCK and GLP-1 satiety hormones were demonstrated to be significantly increased by chicory in vitro.


Asunto(s)
Regulación del Apetito/efectos de los fármacos , Cichorium intybus/química , Extractos Vegetales/farmacología , Prebióticos/análisis , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Cichorium intybus/genética , Cichorium intybus/metabolismo , Digestión/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Ratones , Extractos Vegetales/metabolismo
14.
BMC Res Notes ; 6: 43, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-23375116

RESUMEN

BACKGROUND: We performed a Nimblegen intra-platform microarray comparison by assessing two categories of flax target probes (short 25-mers oligonucleotides and long 60-mers oligonucleotides) in identical conditions of target production, design, labelling, hybridization, image analyses, and data filtering. We compared technical parameters of array hybridizations, precision and accuracy as well as specific gene expression profiles. RESULTS: Comparison of the hybridization quality, precision and accuracy of expression measurements, as well as an interpretation of differential gene expression in flax tissues were performed. Both array types yielded reproducible, accurate and comparable data that are coherent for expression measurements and identification of differentially expressed genes. 60-mers arrays gave higher hybridization efficiencies and therefore were more sensitive allowing the detection of a higher number of unigenes involved in the same biological process and/or belonging to the same multigene family. CONCLUSION: The two flax arrays provide a good resolution of expressed functions; however the 60-mers arrays are more sensitive and provide a more in-depth coverage of candidate genes potentially involved in different biological processes.


Asunto(s)
ADN/química , Análisis de Secuencia por Matrices de Oligonucleótidos , Sondas de ADN , Hibridación de Ácido Nucleico , Reproducibilidad de los Resultados
15.
J Proteomics ; 80: 145-59, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23318888

RESUMEN

Pea (Pisum sativum L.) productivity is linked to its ability to cope with abiotic stresses such as low temperatures during fall and winter. In this study, we investigate the chloroplast-related changes occurring during pea cold acclimation, in order to further lead to genetic improvement of its field performance. Champagne and Térèse, two pea lines with different acclimation capabilities, were studied by physiological measurements, sub-cellular fractionation followed by relative protein quantification and two-dimensional DIGE. The chilling tolerance might be related to an increase in protein related to soluble sugar synthesis, antioxidant potential, regulation of mRNA transcription and translation through the chloroplast. Freezing tolerance, only observed in Champagne, seems to rely on a higher inherent photosynthetic potential at the beginning of the cold exposure, combined with an early ability to start metabolic processes aimed at maintaining the photosynthetic capacity, optimizing the stoichiometry of the photosystems and inducing dynamic changes in carbohydrate and protein synthesis and/or turnover.


Asunto(s)
Aclimatación , Cloroplastos/química , Frío , Pisum sativum/fisiología , Biomasa , Carbono/química , Clorofila/química , Cloroplastos/genética , Transporte de Electrón , Electroforesis en Gel Bidimensional , Congelación , Regulación de la Expresión Génica de las Plantas , Genotipo , Nitrógeno/química , Estrés Oxidativo , Pisum sativum/metabolismo , Fotoquímica , Fotosíntesis , Complejo de Proteína del Fotosistema II , Proteínas de Plantas/metabolismo , Proteoma , Proteómica , ARN Mensajero/metabolismo , Transducción de Señal , Fracciones Subcelulares
16.
J Plant Physiol ; 169(17): 1754-66, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22841625

RESUMEN

MicroRNAs (miRNAs) are small non-protein coding regulatory RNAs released after the cleavage of a primary transcript. A computational homology search of expressed sequence tags (ESTs) available in public databases allowed the identification of 20 conserved miRNAs belonging to 13 different families in flax (Linum usitatissimum). Most of the miRNAs were 21 nucleotides-long and carried a uracil at the 5' end. They originated from precursor transcripts that vary greatly in length. A single precursor containing 2 different stem-loop structures, each one carrying a member of the miR398 family, was identified for the first time in plants. qRT-PCR analyses of 4 selected miRNAs indicated that all were differentially expressed in flax tissues. The 20 miRNAs could potentially regulate 112 different targets including genes involved in cell wall metabolism. Analyses of pri-miRNA and potential gene expression profiles in a publically available microarray data set allowed the identification of a number of highly opposite pri-miRNA/target gene profiles potentially involved in regulating plantacyanin levels, F-box mediated signalling processes, protein metabolism and ion homeostasis, as well as 6 unknown processes.


Asunto(s)
Lino/genética , MicroARNs/genética , Proteínas de Plantas/genética , ARN de Planta/genética , Secuencia de Bases , Secuencia Conservada , Etiquetas de Secuencia Expresada , Lino/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Distribución Tisular
17.
Plant Physiol ; 158(4): 1893-915, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22331411

RESUMEN

Flax (Linum usitatissimum) stems contain cells showing contrasting cell wall structure: lignified in inner stem xylem tissue and hypolignified in outer stem bast fibers. We hypothesized that stem hypolignification should be associated with extensive phenolic accumulation and used metabolomics and transcriptomics to characterize these two tissues. (1)H nuclear magnetic resonance clearly distinguished inner and outer stem tissues and identified different primary and secondary metabolites, including coniferin and p-coumaryl alcohol glucoside. Ultrahigh-performance liquid chromatography-Fourier transform ion cyclotron resonance-mass spectrometry aromatic profiling (lignomics) identified 81 phenolic compounds, of which 65 were identified, to our knowledge, for the first time in flax and 11 for the first time in higher plants. Both aglycone forms and glycosides of monolignols, lignin oligomers, and (neo)lignans were identified in both inner and outer stem tissues, with a preponderance of glycosides in the hypolignified outer stem, indicating the existence of a complex monolignol metabolism. The presence of coniferin-containing secondary metabolites suggested that coniferyl alcohol, in addition to being used in lignin and (neo)lignan formation, was also utilized in a third, partially uncharacterized metabolic pathway. Hypolignification of bast fibers in outer stem tissues was correlated with the low transcript abundance of monolignol biosynthetic genes, laccase genes, and certain peroxidase genes, suggesting that flax hypolignification is transcriptionally regulated. Transcripts of the key lignan genes Pinoresinol-Lariciresinol Reductase and Phenylcoumaran Benzylic Ether Reductase were also highly abundant in flax inner stem tissues. Expression profiling allowed the identification of NAC (NAM, ATAF1/2, CUC2) and MYB transcription factors that are likely involved in regulating both monolignol production and polymerization as well as (neo)lignan production.


Asunto(s)
Lino/metabolismo , Lignina/metabolismo , Tallos de la Planta/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Lino/enzimología , Lino/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Lacasa/genética , Lacasa/metabolismo , Lignanos , Lignina/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Modelos Biológicos , Peroxidasa/genética , Peroxidasa/metabolismo , Fenoles/metabolismo , Tallos de la Planta/genética , Polimerizacion , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Transcripción/metabolismo , Xilema/metabolismo
18.
BMC Plant Biol ; 10: 122, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20565992

RESUMEN

BACKGROUND: In our laboratory we use cultured chicory (Cichorium intybus) explants as a model to investigate cell reactivation and somatic embryogenesis and have produced 2 chicory genotypes (K59, C15) sharing a similar genetic background. K59 is a responsive genotype (embryogenic) capable of undergoing complete cell reactivation i.e. cell de- and re-differentiation leading to somatic embryogenesis (SE), whereas C15 is a non-responsive genotype (non-embryogenic) and is unable to undergo SE. Previous studies 1 showed that the use of the beta-D-glucosyl Yariv reagent (beta-GlcY) that specifically binds arabinogalactan-proteins (AGPs) blocked somatic embryo production in chicory root explants. This observation indicates that beta-GlcY is a useful tool for investigating somatic embryogenesis (SE) in chicory. In addition, a putative AGP (DT212818) encoding gene was previously found to be significantly up-regulated in the embryogenic K59 chicory genotype as compared to the non-embryogenic C15 genotype suggesting that this AGP could be involved in chicory re-differentiation 2. In order to improve our understanding of the molecular and cellular regulation underlying SE in chicory, we undertook a detailed cytological study of cell reactivation events in K59 and C15 genotypes, and used microarray profiling to compare gene expression in these 2 genotypes. In addition we also used beta-GlcY to block SE in order to identify genes potentially involved in this process. RESULTS: Microscopy confirmed that only the K59, but not the C15 genotype underwent complete cell reactivation leading to SE formation. beta-GlcY-treatment of explants blocked in vitro SE induction, but not cell reactivation, and induced cell wall modifications. Microarray analyses revealed that 78 genes were differentially expressed between induced K59 and C15 genotypes. The expression profiles of 19 genes were modified by beta-GlcY-treatment. Eight genes were both differentially expressed between K59 and C15 genotypes during SE induction and transcriptionally affected by beta-GlcY-treatment: AGP (DT212818), 26 S proteasome AAA ATPase subunit 6 (RPT6), remorin (REM), metallothionein-1 (MT1), two non-specific lipid transfer proteins genes (SDI-9 and DEA1), 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase), and snakin 2 (SN2). These results suggest that the 8 genes, including the previously-identified AGP gene (DT212818), could be involved in cell fate determination events leading to SE commitment in chicory. CONCLUSION: The use of two different chicory genotypes differing in their responsiveness to SE induction, together with beta-GlcY-treatment represented an efficient tool to discriminate cell reactivation from the SE morphogenetic pathway. Such an approach, together with microarray analyses, permitted us to identify several putative key genes related to the SE morphogenetic pathway in chicory.


Asunto(s)
Cichorium intybus/embriología , Cichorium intybus/genética , Perfilación de la Expresión Génica , Pared Celular/metabolismo , Cichorium intybus/citología , Medios de Cultivo , Etiquetas de Secuencia Expresada , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genotipo , Glucósidos/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Floroglucinol/análogos & derivados , Floroglucinol/farmacología , ARN de Planta/genética , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA