Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Phytoremediation ; 25(1): 106-114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35416737

RESUMEN

Although many countries banned the insecticide endosulfan, it is still an environmental pollutant. Plants metabolize the two diastereomers of the formulations known as technical grade endosulfan (TGE) by two phase I pathways: hydrolysis leading to less toxic derivatives and oxidation giving endosulfan sulfate which is as toxic as endosulfan itself. We assessed the removal, bioaccumulation and phase I metabolization of TGE from water matrices using hairy root clones (HRs) of three edible species, Brassica napus, Raphanus sativus and Capsicum annuum. B. napus and C. annuum HRs removed 86% of TGE from the bioreaction media in 2 and 96 h, respectively, whereas R. sativus HRs removed 91% of TGE within 6 h of biotreatment. In the experiments with B. napus, only endosulfan sulfate was detected in both biomass and medium, whereas R. sativus and C. annuum accumulated endosulfan sulfate and endosulfan alcohol. Besides, endosulfan lactone was detected in C. annuum reaction medium. Acute ichthyotoxicity assays toward Poecilia reticulata showed that media contaminated with TGE lethal levels did not produce mortality after the phytotreatments. This research highlights the feasibility of using HRs to evaluate plant enzymatic abilities toward xenobiotics and their potential for the design of ex situ decontamination processes.


Asunto(s)
Endosulfano , Insecticidas , Endosulfano/análisis , Endosulfano/metabolismo , Endosulfano/toxicidad , Biodegradación Ambiental , Insecticidas/análisis , Insecticidas/metabolismo , Insecticidas/toxicidad , Agua
2.
J Hazard Mater ; 305: 149-155, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26685061

RESUMEN

Endosulfan is a Persistent Organic Pollutant insecticide still used in many countries. It is commercially available as mixtures of two diastereomers, α- and ß-endosulfan, known as technical grade endosulfan (TGE). A laboratory model based on the use of axenic plant cell cultures to study the removal and metabolization of both isomers from contaminated water matrixes was established. No differences were recorded in the removal of the two individual isomers with the two tested endemic plants, Grindelia pulchella and Tessaria absinthioides. Undifferentiated cultures of both plant species were very efficient to lower endosulfan concentration in spiked solutions. Metabolic fate of TGE was evaluated by analyzing the time course of endosulfan metabolites accumulation in both plant biomass and bioremediation media. While in G. pulchella we only detected endosulfan sulfate, in T. absinthioides the non-toxic endosulfan alcohol was the main metabolite at 48h, giving the possibility of designing phytoremediation approaches.


Asunto(s)
Asteraceae/metabolismo , Endosulfano/metabolismo , Insecticidas/metabolismo , Células Vegetales/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA