Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073476

RESUMEN

The structural characterization of glass slides surface-modified with 3-azidopropyltrimethoxysilane and used for anchoring nucleic acids, resulting in the so-called DNA microarrays, is presented. Depending on the silanization conditions, the slides were found to show different oligonucleotide binding efficiency, thus, an attempt was made to correlate this efficiency with the structural characteristics of the silane layers. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray reflectometry (XRR) measurements provided information on the surface topography, chemical composition and thickness of the silane films, respectively. The surface for which the best oligonucleotides binding efficiency is observed, has been found to consist of a densely-packed silane layer, decorated with a high-number of additional clusters that are believed to host exposed azide groups.

2.
Chemphyschem ; 13(18): 4134-41, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23169540

RESUMEN

Composites of unmodified or oxidized carbon nano-onions (CNOs/ox-CNOs) with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) are prepared with different compositions. By varying the ratio of PEDOT:PSS relative to CNOs, CNO/PEDOT:PSS composites with various PEDOT:PSS loadings are obtained and the corresponding film properties are studied as a function of the polymer. X-ray photoelectron spectroscopy characterization is performed for pristine and ox-CNO samples. The composites are characterized by scanning and transmission electron microscopy and differential scanning calorimetry studies. The electrochemical properties of the nanocomposites are determined and compared. Doping the composites with carbon nanostructures significantly increases their mechanical and electrochemical stabilities. A comparison of the results shows that CNOs dispersed in the polymer matrices increase the capacitance of the CNO/PEDOT:PSS and ox-CNO/PEDOT:PSS composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA