Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931800

RESUMEN

A novel design of a MEMS (Micro-Electromechanical System) capacitive accelerometer fabricated by surface micromachining, with a structure enabling precise auto-calibration during operation, is presented. Precise auto-calibration was introduced to ensure more accurate acceleration measurements compared to standard designs. The standard mechanical structure of the accelerometer (seismic mass integrated with elastic suspension and movable plates coupled with fixed plates forming a system of differential sensing capacitors) was equipped with three movable detection electrodes coupled with three fixed electrodes, thus creating three atypical tunneling displacement transducers detecting three specific positions of seismic mass with high precision, enabling the auto-calibration of the accelerometer while it was being operated. Auto-calibration is carried out by recording the accelerometer indication while the seismic mass occupies a specific position, which corresponds to a known value of acting acceleration determined in a pre-calibration process. The diagram and the design of the mechanical structure of the accelerometer, the block diagram of the electronic circuits, and the mathematical relationships used for auto-calibration are presented. The results of the simulation studies related to mechanical and electric phenomena are discussed.

2.
Sensors (Basel) ; 22(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35214402

RESUMEN

The main errors of MEMS accelerometers are misalignments of their sensitivity axes, thermal and long-term drifts, imprecise factory calibration, and aging phenomena. In order to reduce these errors, a two-axial tilt sensor comprising a triaxial MEMS accelerometer, an aligning unit, and solid cubic housing was built. By means of the aligning unit it was possible to align the orientation of the accelerometer sensitive axes with respect to the housing with an accuracy of 0.03°. Owing to the housing, the sensor could be easily and quickly recalibrated, and thus errors such as thermal and long-term drifts as well as effects of aging were eliminated. Moreover, errors due to local and temporal variations of the gravitational acceleration can be compensated for. Procedures for calibrating and aligning the accelerometer are described. Values of thermal and long-term drifts of the tested sensor, resulting in tilt errors of even 0.4°, are presented. Application of the sensor for monitoring elevated loads is discussed.


Asunto(s)
Sistemas Microelectromecánicos , Aceleración , Acelerometría , Calibración , Sistemas Microelectromecánicos/métodos
3.
Sensors (Basel) ; 21(14)2021 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-34300633

RESUMEN

Grating Interferometry, known in the relevant literature as the High Sensitivity Moiré Interferometry, is a method for in-plane displacement and strain measurement. The sensitivity of this method depends on the spatial frequency of the diffraction grating attached to the object under test. For typical specimen grating, with high spatial frequency of 1200 lines per mm, the basic sensitivity is 0.417 µm per fringe. A concept of in-plane displacement sensor based on Grating Interferometry with a stepwise change in sensitivity is presented. It is realized by using the specimen grating with lower spatial frequency. In this case, the grating has more higher diffraction orders and by selecting them appropriately, the sensitivity (chosen from 1.25 µm, 0.625 µm, or 0.417 µm) and the resulting measurement range (chosen from about 600 µm, 300 µm, or 200 µm) can be adjusted to the requirements of a given experiment. A special method of filtration is required in this case. Achromatic configuration with illumination grating was chosen due to its low sensitivity to vibration.

4.
Sensors (Basel) ; 21(4)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562716

RESUMEN

A review of various kinds of solid tilts sensors, using a free mechanical member for generation of electric-contact (mostly a ball), is presented. Standard and original solutions are discussed. The latest patents are described. A classification of the existing solutions with respect to their sensing principle is proposed. Possible types of the electric/electronic circuits are discussed. Advantages of these sensors are emphasized: mainly optional operation without power supply, resistance to electrostatic discharges, and simplicity of signal processing. Technological details are briefly introduced, along with miniaturization prospects. Additionally, liquid tilt sensors are succinctly characterized. The most typical tilt sensing techniques are concisely compared.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...