Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxicology ; 500: 153683, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38013136

RESUMEN

Scientific progress and ethical considerations are increasingly shifting the toxicological focus from in vivo animal models to in vitro studies utilizing physiologically relevant cell cultures. Consequently, we evaluated and validated a three-dimensional (3D) model of the human lung using Calu-3 cells cultured at an air-liquid interface (ALI) for 28 days. Assessment of seven essential genes of differentiation and transepithelial electrical resistance (TEER) measurements, in conjunction with mucin (MUC5AC) staining, validated the model. We observed a time-dependent increase in TEER, genetic markers of mucus-producing cells (muc5ac, muc5b), basal cells (trp63), ciliated cells (foxj1), and tight junctions (tjp1). A decrease in basal cell marker krt5 levels was observed. Subsequently, we utilized this validated ALI-cultured Calu-3 model to investigate the adversity of the aerosols generated from three flavored electronic cigarette (EC) e-liquids: cinnamon, vanilla tobacco, and hazelnut. These aerosols were compared against traditional cigarette smoke (3R4F) to assess their relative toxicity. The aerosols generated from PG/VG vehicle control, hazelnut and cinnamon e-liquids, but not vanilla tobacco, significantly decreased TEER and increased lactate dehydrogenase (LDH) release compared to the incubator and air-only controls. Compared to 3R4F, there were no significant differences in TEER or LDH with the tested flavored EC aerosols other than vanilla tobacco. This starkly contrasted our expectations, given the common perception of e-liquids as a safer alternative to cigarettes. Our study suggests that these results depend on flavor type. Therefore, we strongly advocate for further research, increased user awareness regarding flavors in ECs, and rigorous regulatory scrutiny to protect public health.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Animales , Humanos , Aerosoles/toxicidad , Aromatizantes/toxicidad , Pulmón , Nicotina
3.
Atmos Pollut Res ; 14(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37275568

RESUMEN

This study investigated the concentration and composition of particulate matter (PM2.5) in the New York City subway system. Realtime measurements, at a one-second cadence, and gravimetric measurements were performed inside train cars along 300 kilometers of nine subway lines, as well as on 333 platforms from 287 subway stations. The mean (±SD) PM2.5 concentration on the underground platforms was 142 ± 69 µg/m3 versus 29 ± 20 µg/m3 for aboveground stations. The average Concentrations inside train cars were 88 ± 14 µg/m3 when traveling through underground tunnels and platforms and 29 ± 31 µg/m3 while on aboveground tracks. The particle composition analysis of filtered samples was done using X-ray fluorescence (XRF), revealing that iron made up approximately 43% of the total PM2.5 mass on station platforms, around 126 times higher than the outdoor ambient iron concentration. Other trace elements include silicon, sulfur, copper, nickel, aluminum, calcium, barium, and manganese. Considering the very high iron content, the comparative analysis of the measured concentration versus the standards set by the Environmental Protection Agency (US EPA) is questionable since those limits are largely based on particulate matter from fossil fuel combustion. Health impact analysis of iron-based particles will complement the study results presented here.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36711192

RESUMEN

It is well-documented that subway stations exhibit high fine particulate matter (PM2.5) concentrations. Little is known about the potential of river-tunnels to increase PM2.5 concentrations in subways. We hypothesized a "river-tunnel" effect exists: Stations adjacent to poorly ventilated tunnels that travel beneath rivers exhibit higher PM2.5 concentrations than more distant stations. Accordingly, the PM2.5 concentrations were monitored at stations adjacent to and two- and three-stations distant from the river-tunnel. Multivariate linear regression analysis was conducted to disentangle how proximity to a river-tunnel and other factors (e.g., depth) influence concentrations. Stations adjacent to a river-tunnel had 80-130% higher PM2.5 concentrations than more distant stations. Moreover, distance from a river-tunnel was the strongest PM2.5-influencing factor This distance effect was not observed at underground stations adjacent to a river-bridge. The "river-tunnel" effect explains some of the inter-station variability in subway PM2.5 concentrations. These results support the need for improving ventilation systems in subways.

5.
Environ Health Perspect ; 129(2): 27001, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33565894

RESUMEN

OBJECTIVES: The goals of this study were to assess the air quality in subway systems in the northeastern United States and estimate the health risks for transit workers and commuters. METHODS: We report real-time and gravimetric PM2.5 concentrations and particle composition from area samples collected in the subways of Philadelphia, Pennsylvania; Boston, Massachusetts; New York City, New York/New Jersey (NYC/NJ); and Washington, District of Columbia. A total of 71 stations across 12 transit lines were monitored during morning and evening rush hours. RESULTS: We observed variable and high PM2.5 concentrations for on-train and on-platform measurements during morning (from 0600 hours to 1000 hours) and evening (from 1500 hours to 1900 hours) rush hour across cities. Mean real-time PM2.5 concentrations in underground stations were 779±249, 548±207, 341±147, 327±136, and 112±46.7 µg/m3 for the PATH-NYC/NJ; MTA-NYC; Washington, DC; Boston; and Philadelphia transit systems, respectively. In contrast, the mean real-time ambient PM2.5 concentration taken above ground outside the subway stations of PATH-NYC/NJ; MTA-NYC; Washington, DC; Boston; and Philadelphia were 20.8±9.3, 24.1±9.3, 12.01±7.8, 10.0±2.7, and 12.6±12.6 µg/m3, respectively. Stations serviced by the PATH-NYC/NJ system had the highest mean gravimetric PM2.5 concentration, 1,020 µg/m3, ever reported for a subway system, including two 1-h gravimetric PM2.5 values of approximately 1,700 µg/m3 during rush hour at one PATH-NYC/NJ subway station. Iron and total carbon accounted for approximately 80% of the PM2.5 mass in a targeted subset of systems and stations. DISCUSSION: Our results document that there is an elevation in the PM2.5 concentrations across subway systems in the major urban centers of Northeastern United States during rush hours. Concentrations in some subway stations suggest that transit workers and commuters may be at increased risk according to U.S. federal environmental and occupational guidelines, depending on duration of exposure. This concern is highest for the PM2.5 concentrations encountered in the PATH-NYC/NJ transit system. Further research is urgently needed to identify the sources of PM2.5 and factors that contribute to high levels in individual stations and lines and to assess their potential health impacts on workers and/or commuters. https://doi.org/10.1289/EHP7202.


Asunto(s)
Contaminantes Atmosféricos , Vías Férreas , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Philadelphia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...