RESUMEN
The next generation of fusion reactors, exemplified by projects such as the Demonstration Power Plant following the International Thermonuclear Experimental Reactor, faces the monumental challenge of proving the viability of generating electricity through thermonuclear fusion. This pursuit introduces heightened complexities in diagnostic methodologies, particularly in microwave-based diagnostics. The increased neutron fluence necessitates significant reductions in vessel penetrations and the elimination of internal diagnostics, posing substantial challenges. SoC technology offers a promising solution by enabling the miniaturization, modularization, integration, and enhancing the reliability of microwave systems. After seven years of research, our team successfully pioneered the V- and W-band system-on-chip approach, leading to the development of active transmitters and passive receiver modules applied in practical settings, notably within the DIII-D tokamak project. Arrays of these modules have supported microwave imaging diagnostics. New physics measurement results from the Electron Cyclotron Emission Imaging system on DIII-D provide compelling evidence of improved diagnostics following the adoption of SoC technology. Furthermore, we achieved a breakthrough in developing an F-band SoC, advancing higher frequency capabilities for fusion devices. These achievements represent a significant leap forward in fusion diagnostic technology, marking substantial progress toward establishing reliable and efficient plasma diagnostics for future fusion reactors.
RESUMEN
A pioneering 4-channel, high-k poloidal, millimeter-wave collective scattering system has been successfully developed for the Experimental Advanced Superconducting Tokamak (EAST). Engineered to explore high-k electron density fluctuations, this innovative system deploys a 270 GHz mm-wave probe beam launched from Port K and directed toward Port P (both ports lie on the midplane and are 110° part), where large aperture optics capture radiation across four simultaneous scattering angles. Tailored to measure density fluctuations with a poloidal wavenumber of up to 20 cm-1, this high-k scattering system underwent rigorous laboratory testing in 2023, and the installation is currently being carried out on EAST. Its primary purpose lies in scrutinizing ion and electron-scale instabilities, such as the electron temperature gradient (ETG) mode, by furnishing measurements of the kθ (poloidal wavenumber) spectrum. This advancement significantly bolsters the capacity to probe high-k electron density fluctuations within the framework of EAST. Beam tracing and data interpretation modules developed for both EAST and NSTX-U high-k scattering diagnostics are described.
RESUMEN
Microwave reflectometry is an invaluable diagnostic tool for measuring electron density profiles in large fusion devices. Density fluctuations near the plasma cutoff layer, particularly those that are time-varying on the timescale of the reflectometry measurement, can result in distortions in phase and/or amplitude of the reflected waveform, which present challenges to the accuracy of the reconstructed profile. The ultra-short pulse reflectometry (USPR) technique eliminates the time-varying issue in that reflectometry data are collected on a nanosecond timescale, essentially freezing the fluctuations in place. An X-mode dedicated 32-channel USPR system has been developed and installed on the EAST, covering the operation frequency range from 52 to 92 GHz. This system enables high-resolution density profile measurements in the plasma pedestal and scrape-off layer, with resolutions reaching 5 mm and 1 µs, respectively. Laboratory testing of the system performance has been conducted, demonstrating the potential of the USPR technique to provide accurate and high-temporal-resolution density profiles in challenging plasma environments.
RESUMEN
A carefully designed waveguide-based millimeter-wave notch filter, operating at 140 GHz, safeguards plasma diagnostic instruments from gyrotron leakage. Utilizing cylindrical cavity resonators with aperture coupling, the filter efficiently resonates 140 GHz wave-power into the TE11p mode, optimizing various geometrical parameters for practical fabrication and high-yield production. Thorough thermal analysis ensures its ability to handle power. The filter achieves outstanding performance with over 90 dB rejection at 140 GHz while providing low insertion loss over the passband (110-138 GHz), which is ideally suited for system-on-chip approach F-band diagnostic system applications.
RESUMEN
This Letter describes a super-oscillatory lens (SOL), with concentric ring-type metallic slits photolithographically fabricated on a glass substrate, that can function at subterahertz frequencies. The SOL has been investigated both experimentally and theoretically and demonstrates a spatial resolution of 1.5 mm (0.5λ), which is 0.45 times the diffraction limit, with a focal length of 75 mm (25λ) at 100 GHz (λ=3mm). Furthermore, the depth of focus of the lens was measured to be 47 mm, which is 10.8 times larger than that of a conventional lens. This type of SOL, with subdiffraction focusing, is thus highly effective for use in industrial inspections with millimeter and terahertz waves.
RESUMEN
To efficiently determine the plasma electron density fluctuations using the MIR diagnostic technique, a 55-75 GHz 65 nm-CMOS transmitter has been developed where four separate intermediate frequency (IF) signals are up-converted, amplified, and then combined to generate an 8-tone RF output; a broadband 90 nm-CMOS receiver has also been constructed, which consists of an RF-low noise amplifier (LNA), mixer, and IF amplifier. The circuits and their corresponding modules will soon be deployed on the DIII-D and NSTX-U fusion devices. A 110-140 GHz 65 nm-CMOS receiver has also been designed, which is suitable for measuring the deep-core temperature fluctuations in the DIII-D tokamak using the electron cyclotron emission imaging diagnostic system. In addition to the RF-LNA/balun, mixer, and IF amplifier, an LO balun/tripler and driving amplifier are now included in this highly integrated circuit chip. By adopting the microwave and millimeter-wave system-on-chip concept in the front-end system design, this paper demonstrates that compact transmitter and receiver modules can be easily built, which, in turn, facilitates array implementation and maintenance.
RESUMEN
The effect of static n=1 resonant magnetic perturbation (RMP) on the spatial structure and temporal dynamics of edge-localized modes (ELMs) and edge turbulence in tokamak plasma has been investigated. Two-dimensional images measured by a millimeter-wave camera on the KSTAR tokamak revealed that the coherent filamentary modes (i.e., ELMs) are still present in the edge region when the usual large scale collapse of the edge confinement, i.e., the ELM crash, is completely suppressed by n=1 RMP. Cross-correlation analyses on the 2D images show that (1) the RMP enhances turbulent fluctuations in the edge toward the ELM-crash-suppression phase, (2) the induced turbulence has a clear dispersion relation for wide ranges of wave number and frequency, and (3) the turbulence involves a net radially outward energy transport. Nonlinear interactions of the turbulent eddies with the coexisting ELMs are clearly observed by bispectral analysis, which implies that the exchange of energy between them may be the key to the prevention of large scale crashes.
RESUMEN
We discuss the recent history and latest developments of the electron cyclotron emission imaging diagnostic technique, wherein electron temperature is measured in magnetically confined plasmas with two-dimensional spatial resolution. The key enabling technologies for this technique are the large-aperture optical systems and the linear detector arrays sensitive to millimeter-wavelength radiation. We present the status and recent progress on existing instruments as well as new systems under development for future experiments. We also discuss data analysis techniques relevant to plasma imaging diagnostics and present recent temperature fluctuation results from the tokamak experiment for technology oriented research (TEXTOR).