Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737220

RESUMEN

Drug resistance remains a major obstacle to malaria control and eradication efforts, necessitating the development of novel therapeutic strategies to treat this disease. Drug combinations based on collateral sensitivity, wherein resistance to one drug causes increased sensitivity to the partner drug, have been proposed as an evolutionary strategy to suppress the emergence of resistance in pathogen populations. In this study, we explore collateral sensitivity between compounds targeting the Plasmodium dihydroorotate dehydrogenase (DHODH). We profiled the cross-resistance and collateral sensitivity phenotypes of several DHODH mutant lines to a diverse panel of DHODH inhibitors. We focus on one compound, TCMDC-125334, which was active against all mutant lines tested, including the DHODH C276Y line, which arose in selections with the clinical candidate DSM265. In six selections with TCMDC-125334, the most common mechanism of resistance to this compound was copy number variation of the dhodh locus, although we did identify one mutation, DHODH I263S, which conferred resistance to TCMDC-125334 but not DSM265. We found that selection of the DHODH C276Y mutant with TCMDC-125334 yielded additional genetic changes in the dhodh locus. These double mutant parasites exhibited decreased sensitivity to TCMDC-125334 and were highly resistant to DSM265. Finally, we tested whether collateral sensitivity could be exploited to suppress the emergence of resistance in the context of combination treatment by exposing wildtype parasites to both DSM265 and TCMDC-125334 simultaneously. This selected for parasites with a DHODH V532A mutation which were cross-resistant to both compounds and were as fit as the wildtype parent in vitro. The emergence of these cross-resistant, evolutionarily fit parasites highlights the mutational flexibility of the DHODH enzyme.


Malaria affects around 240 million people around the world every year. The microscopic parasite responsible for the disease are carried by certain mosquitoes and gets transmitted to humans through bites. These parasites are increasingly acquiring genetic mutations that make anti-malaria medication less effective, creating an urgent need for alternative treatment approaches. Several new malaria drugs being explored in preclinical research work by binding to an enzyme known as DHODH and preventing it from performing its usual role in the parasite. Previous work found that, in some cases, malaria parasites that evolved resistance to one type of DHODH inhibitor (by acquiring mutations in their DHODH enzyme) then became more vulnerable to another kind. It may be possible to leverage this 'collateral sensitivity' by designing treatments which combine two DHODH inhibitors and therefore make it harder for the parasites to evolve resistance. To investigate this possibility, Mandt et al. first tested several DHODH inhibitors to find the one that was most potent against drug-resistant parasites. In subsequent experiments, they combined TCMDC-125334, the best candidate that emerged from these tests, with a DHODH inhibitor that works well against vulnerable parasites. However, the parasites still rapidly evolved resistance. Further work identified a new DHODH mutation that allowed the parasites to evade both drugs simultaneously. Together, these findings suggest that the DHODH enzyme may not be the best target for new malaria drugs because many it can acquire many possible mutations that confer resistance. Such results may inform other studies that aim to harness collateral sensitivity to fight against a range of harmful agents.


Asunto(s)
Antimaláricos , Malaria Falciparum , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Parásitos , Animales , Humanos , Dihidroorotato Deshidrogenasa , Malaria Falciparum/parasitología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Variaciones en el Número de Copia de ADN , Sensibilidad Colateral al uso de Fármacos , Parásitos/metabolismo
2.
Nat Commun ; 14(1): 1455, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927839

RESUMEN

Identifying how small molecules act to kill malaria parasites can lead to new "chemically validated" targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes PfACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and PfACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates PfACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of PfACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the PfACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Mutación , Ligasas/metabolismo
3.
Nat Commun ; 13(1): 4976, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008486

RESUMEN

The development of next-generation antimalarials that are efficacious against the human liver and asexual blood stages is recognized as one of the world's most pressing public health challenges. In recent years, aminoacyl-tRNA synthetases, including prolyl-tRNA synthetase, have emerged as attractive targets for malaria chemotherapy. We describe the development of a single-step biochemical assay for Plasmodium and human prolyl-tRNA synthetases that overcomes critical limitations of existing technologies and enables quantitative inhibitor profiling with high sensitivity and flexibility. Supported by this assay platform and co-crystal structures of representative inhibitor-target complexes, we develop a set of high-affinity prolyl-tRNA synthetase inhibitors, including previously elusive aminoacyl-tRNA synthetase triple-site ligands that simultaneously engage all three substrate-binding pockets. Several compounds exhibit potent dual-stage activity against Plasmodium parasites and display good cellular host selectivity. Our data inform the inhibitor requirements to overcome existing resistance mechanisms and establish a path for rational development of prolyl-tRNA synthetase-targeted anti-malarial therapies.


Asunto(s)
Aminoacil-ARNt Sintetasas , Antimaláricos , Plasmodium , Aminoacil-ARNt Sintetasas/química , Antimaláricos/química , Antimaláricos/farmacología , Humanos , Piperidinas , Plasmodium falciparum , Quinazolinonas , ARN de Transferencia
4.
Commun Biol ; 5(1): 128, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35149760

RESUMEN

In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that may play a role in compound binding. Our work shows that compound-target pairs can be conserved across multiple species. The set of 25 most frequently mutated genes was enriched for transcription factors, and for almost 25 percent of the compounds, resistance was mediated by one of 100 independently derived, gain-of-function SNVs found in a 170 amino acid domain in the two Zn2C6 transcription factors YRR1 and YRM1 (p < 1 × 10-100). This remarkable enrichment for transcription factors as drug resistance genes highlights their important role in the evolution of antifungal xenobiotic resistance and underscores the challenge to develop antifungal treatments that maintain potency.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Xenobióticos/metabolismo , Xenobióticos/farmacología
5.
Cell Chem Biol ; 29(2): 191-201.e8, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34348113

RESUMEN

We identify the Plasmodium falciparum acetyl-coenzyme A synthetase (PfAcAS) as a druggable target, using genetic and chemical validation. In vitro evolution of resistance with two antiplasmodial drug-like compounds (MMV019721 and MMV084978) selects for mutations in PfAcAS. Metabolic profiling of compound-treated parasites reveals changes in acetyl-CoA levels for both compounds. Genome editing confirms that mutations in PfAcAS are sufficient to confer resistance. Knockdown studies demonstrate that PfAcAS is essential for asexual growth, and partial knockdown induces hypersensitivity to both compounds. In vitro biochemical assays using recombinantly expressed PfAcAS validates that MMV019721 and MMV084978 directly inhibit the enzyme by preventing CoA and acetate binding, respectively. Immunolocalization studies reveal that PfAcAS is primarily localized to the nucleus. Functional studies demonstrate inhibition of histone acetylation in compound-treated wild-type, but not in resistant parasites. Our findings identify and validate PfAcAS as an essential, druggable target involved in the epigenetic regulation of gene expression.


Asunto(s)
Acetato CoA Ligasa/antagonistas & inhibidores , Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Acetato CoA Ligasa/metabolismo , Antimaláricos/química , Inhibidores Enzimáticos/química , Humanos , Malaria/metabolismo , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología
6.
Cell Chem Biol ; 29(5): 824-839.e6, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34233174

RESUMEN

Widespread Plasmodium falciparum resistance to first-line antimalarials underscores the vital need to develop compounds with novel modes of action and identify new druggable targets. Here, we profile five compounds that potently inhibit P. falciparum asexual blood stages. Resistance selection studies with three carboxamide-containing compounds, confirmed by gene editing and conditional knockdowns, identify point mutations in the parasite transporter ABCI3 as the primary mediator of resistance. Selection studies with imidazopyridine or quinoline-carboxamide compounds also yield changes in ABCI3, this time through gene amplification. Imidazopyridine mode of action is attributed to inhibition of heme detoxification, as evidenced by cellular accumulation and heme fractionation assays. For the copy-number variation-selecting imidazopyridine and quinoline-carboxamide compounds, we find that resistance, manifesting as a biphasic concentration-response curve, can independently be mediated by mutations in the chloroquine resistance transporter PfCRT. These studies reveal the interconnectedness of P. falciparum transporters in overcoming drug pressure in different parasite strains.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Malaria Falciparum , Parásitos , Quinolinas , Transportadoras de Casetes de Unión a ATP/genética , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Hemo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Proteínas de Transporte de Membrana/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Quinolinas/farmacología
7.
ACS Infect Dis ; 7(10): 2764-2776, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34523908

RESUMEN

There is a shift in antimalarial drug discovery from phenotypic screening toward target-based approaches, as more potential drug targets are being validated in Plasmodium species. Given the high attrition rate and high cost of drug discovery, it is important to select the targets most likely to deliver progressible drug candidates. In this paper, we describe the criteria that we consider important for selecting targets for antimalarial drug discovery. We describe the analysis of a number of drug targets in the Malaria Drug Accelerator (MalDA) pipeline, which has allowed us to prioritize targets that are ready to enter the drug discovery process. This selection process has also highlighted where additional data are required to inform target progression or deprioritization of other targets. Finally, we comment on how additional drug targets may be identified.


Asunto(s)
Antimaláricos , Malaria , Plasmodium , Descubrimiento de Drogas , Humanos , Malaria/tratamiento farmacológico
8.
Trends Parasitol ; 37(6): 493-507, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33648890

RESUMEN

The Malaria Drug Accelerator (MalDA) is a consortium of 15 leading scientific laboratories. The aim of MalDA is to improve and accelerate the early antimalarial drug discovery process by identifying new, essential, druggable targets. In addition, it seeks to produce early lead inhibitors that may be advanced into drug candidates suitable for preclinical development and subsequent clinical testing in humans. By sharing resources, including expertise, knowledge, materials, and reagents, the consortium strives to eliminate the structural barriers often encountered in the drug discovery process. Here we discuss the mission of the consortium and its scientific achievements, including the identification of new chemically and biologically validated targets, as well as future scientific directions.


Asunto(s)
Antimaláricos/uso terapéutico , Descubrimiento de Drogas , Malaria/tratamiento farmacológico , Antimaláricos/farmacología , Plasmodium/efectos de los fármacos , Tiempo
10.
Sci Transl Med ; 11(521)2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31801884

RESUMEN

Resistance has developed in Plasmodium malaria parasites to every antimalarial drug in clinical use, prompting the need to characterize the pathways mediating resistance. Here, we report a framework for assessing development of resistance of Plasmodium falciparum to new antimalarial therapeutics. We investigated development of resistance by P. falciparum to the dihydroorotate dehydrogenase (DHODH) inhibitors DSM265 and DSM267 in tissue culture and in a mouse model of P. falciparum infection. We found that resistance to these drugs arose rapidly both in vitro and in vivo. We identified 13 point mutations mediating resistance in the parasite DHODH in vitro that overlapped with the DHODH mutations that arose in the mouse infection model. Mutations in DHODH conferred increased resistance (ranging from 2- to ~400-fold) to DHODH inhibitors in P. falciparum in vitro and in vivo. We further demonstrated that the drug-resistant parasites carrying the C276Y mutation had mitochondrial energetics comparable to the wild-type parasite and also retained their fitness in competitive growth experiments. Our data suggest that in vitro selection of drug-resistant P. falciparum can predict development of resistance in a mouse model of malaria infection.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Parásitos/enzimología , Animales , Dihidroorotato Deshidrogenasa , Modelos Animales de Enfermedad , Resistencia a Medicamentos/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Femenino , Ratones SCID , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Parásitos/efectos de los fármacos , Fenotipo , Plasmodium falciparum , Mutación Puntual/genética , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Triazoles/química , Triazoles/farmacología , Triazoles/uso terapéutico
11.
ACS Infect Dis ; 5(4): 515-520, 2019 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-30773881

RESUMEN

We have previously identified the cytoplasmic prolyl tRNA synthetase in Plasmodium falciparum as the functional target of the natural product febrifugine and its synthetic analogue halofuginone (HFG), one of the most potent antimalarials discovered to date. However, our studies also discovered that short-term treatment of asexual blood stage P. falciparum with HFG analogues causes a 20-fold increase in intracellular proline, termed the adaptive proline response (APR), which renders parasites tolerant to HFG. This novel resistance phenotype lacks an apparent genetic basis but remains stable after drug withdrawal. On the basis of our findings that HFG treatment induces eIF2α phosphorylation, a sensitive marker and mediator of cellular stress, we here investigate if eIF2α-signaling is functionally linked to the APR. In our comparative studies using a parasite line lacking PfeIK1, the Plasmodium orthologue of the eIF2α-kinase GCN2 that mediates amino acid deprivation sensing, we show that HFG activity and the APR are independent from PfeIK1 and eIF2α signaling.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Plasmodium falciparum/metabolismo , Prolina/metabolismo , Proteínas Protozoarias/metabolismo , Aminoacil-ARNt Sintetasas/genética , Antimaláricos/farmacología , Resistencia a Medicamentos , Factor 2 Eucariótico de Iniciación/genética , Humanos , Malaria Falciparum/parasitología , Fosforilación , Piperidinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Quinazolinonas/farmacología , Transducción de Señal/efectos de los fármacos
12.
Science ; 362(6419)2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30523084

RESUMEN

To discover leads for next-generation chemoprotective antimalarial drugs, we tested more than 500,000 compounds for their ability to inhibit liver-stage development of luciferase-expressing Plasmodium spp. parasites (681 compounds showed a half-maximal inhibitory concentration of less than 1 micromolar). Cluster analysis identified potent and previously unreported scaffold families as well as other series previously associated with chemoprophylaxis. Further testing through multiple phenotypic assays that predict stage-specific and multispecies antimalarial activity distinguished compound classes that are likely to provide symptomatic relief by reducing asexual blood-stage parasitemia from those which are likely to only prevent malaria. Target identification by using functional assays, in vitro evolution, or metabolic profiling revealed 58 mitochondrial inhibitors but also many chemotypes possibly with previously unidentified mechanisms of action.


Asunto(s)
Antimaláricos/farmacología , Quimioprevención , Descubrimiento de Drogas , Malaria/prevención & control , Plasmodium/efectos de los fármacos , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Antimaláricos/uso terapéutico , Evaluación Preclínica de Medicamentos , Humanos , Mitocondrias/efectos de los fármacos , Plasmodium/crecimiento & desarrollo
13.
Science ; 359(6372): 191-199, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29326268

RESUMEN

Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target-inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Genoma de Protozoos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Activación Metabólica , Alelos , Variaciones en el Número de Copia de ADN , Evolución Molecular Dirigida , Resistencia a Múltiples Medicamentos/genética , Genes Protozoarios , Metabolómica , Mutación , Plasmodium falciparum/crecimiento & desarrollo , Selección Genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
ACS Infect Dis ; 4(4): 508-515, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29336544

RESUMEN

Drug resistance has been reported for every antimalarial in use highlighting the need for new strategies to protect the efficacy of therapeutics in development. We have previously shown that resistance can be suppressed with a population biology trap: by identifying situations where resistance to one compound confers hypersensitivity to another (collateral sensitivity), we can design combination therapies that not only kill the parasite but also guide its evolution away from resistance. We applied this concept to the Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) enzyme, a well validated antimalarial target with inhibitors in the development pipeline. Here, we report a high-throughput screen to identify compounds specifically active against PfDHODH resistant mutants. We additionally perform extensive cross-resistance profiling allowing us to identify compound pairs demonstrating the potential for mutually incompatible resistance. These combinations represent promising starting points for exploiting collateral sensitivity to extend the useful lifespan of new antimalarial therapeutics.


Asunto(s)
Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Inhibidores Enzimáticos/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Dihidroorotato Deshidrogenasa , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos
15.
Mol Cell Proteomics ; 17(1): 43-60, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29162636

RESUMEN

Despite recent efforts toward control and elimination, malaria remains a major public health problem worldwide. Plasmodium falciparum resistance against artemisinin, used in front line combination drugs, is on the rise, and the only approved vaccine shows limited efficacy. Combinations of novel and tailored drug and vaccine interventions are required to maintain the momentum of the current malaria elimination program. Current evidence suggests that strain-transcendent protection against malaria infection can be achieved using whole organism vaccination or with a polyvalent vaccine covering multiple antigens or epitopes. These approaches have been successfully applied to the human-infective sporozoite stage. Both systemic and tissue-specific pathology during infection with the human malaria parasite P. falciparum is caused by asexual blood stages. Tissue tropism and vascular sequestration are the result of specific binding interactions between antigens on the parasite-infected red blood cell (pRBC) surface and endothelial receptors. The major surface antigen and parasite ligand binding to endothelial receptors, PfEMP1 is encoded by about 60 variants per genome and shows high sequence diversity across strains. Apart from PfEMP1 and three additional variant surface antigen families RIFIN, STEVOR, and SURFIN, systematic analysis of the infected red blood cell surface is lacking. Here we present the most comprehensive proteomic investigation of the parasitized red blood cell surface so far. Apart from the known variant surface antigens, we identified a set of putative single copy surface antigens with low sequence diversity, several of which are validated in a series of complementary experiments. Further functional and immunological investigation is underway to test these novel P. falciparum blood stage proteins as possible vaccine candidates.


Asunto(s)
Antígenos de Protozoos/inmunología , Antígenos de Superficie/inmunología , Vacunas contra la Malaria , Plasmodium falciparum/inmunología , Animales , Membrana Celular/inmunología , Eritrocitos/inmunología , Femenino , Ratones Endogámicos BALB C , Proteoma , Proteómica
16.
Trends Parasitol ; 33(3): 214-230, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28179098

RESUMEN

Population genetic strategies that leverage association, selection, and linkage have identified drug-resistant loci. However, challenges and limitations persist in identifying drug-resistance loci in malaria. In this review we discuss the genetic basis of drug resistance and the use of genome-wide association studies, complemented by selection and linkage studies, to identify and understand mechanisms of drug resistance and response. We also discuss the implications of nongenetic mechanisms of drug resistance recently reported in the literature, and present models of the interplay between nongenetic and genetic processes that contribute to the emergence of drug resistance. Throughout, we examine artemisinin resistance as an example to emphasize challenges in identifying phenotypes suitable for population genetic studies as well as complications due to multiple-factor drug resistance.


Asunto(s)
Resistencia a Medicamentos/genética , Estudio de Asociación del Genoma Completo , Malaria/parasitología , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Genética de Población , Humanos , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos
17.
Chemistry ; 23(17): 4137-4148, 2017 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27997727

RESUMEN

Phenotype-based screening of diverse compound collections generated by privileged substructure-based diversity-oriented synthesis (pDOS) is considered one of the prominent approaches in the discovery of novel drug leads. However, one key challenge that remains is the development of efficient and modular synthetic routes toward the facile access of privileged small-molecule libraries with skeletal and stereochemical complexity and drug-like properties. In this regard, a novel and diverse one-pot procedure for the diastereoselective synthesis of privileged polycyclic benzopyrans and benzoxepines is described herein. These unexplored chemotypes were accessed by utilizing an acid-mediated diaza-Diels-Alder reaction of 2-allyloxy- and/or homoallyloxy benzaldehyde with 2-aminoazine building blocks. Profiling of representative analogues against blood-stage Plasmodium falciparum parasites identified three lead candidates with low micromolar antimalarial activity.

18.
ACS Infect Dis ; 2(11): 816-826, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27933786

RESUMEN

MMV007564 is a novel antimalarial benzimidazolyl piperidine chemotype identified in cellular screens. To identify the genetic determinant of MMV007564 resistance, parasites were cultured in the presence of the compound to generate resistant lines. Whole genome sequencing revealed distinct mutations in the gene named Plasmodium falciparum cyclic amine resistance locus (pfcarl), encoding a conserved protein of unknown function. Mutations in pfcarl are strongly associated with resistance to a structurally unrelated class of compounds, the imidazolopiperazines, including KAF156, currently in clinical trials. Our data demonstrate that pfcarl mutations confer resistance to two distinct compound classes, benzimidazolyl piperidines and imidazolopiperazines. However, MMV007564 and the imidazolopiperazines, KAF156 and GNF179, have different timings of action in the asexual blood stage and different potencies against the liver and sexual blood stages. These data suggest that pfcarl is a multidrug-resistance gene rather than a common target for benzimidazolyl piperidines and imidazolopiperazines.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Antimaláricos/química , Humanos , Estadios del Ciclo de Vida , Malaria Falciparum/tratamiento farmacológico , Mutación , Piperidinas/química , Piperidinas/farmacología , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo
19.
Nature ; 538(7625): 344-349, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27602946

RESUMEN

Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Azetidinas/uso terapéutico , Descubrimiento de Drogas , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Animales , Antimaláricos/administración & dosificación , Antimaláricos/uso terapéutico , Compuestos de Azabiciclo/administración & dosificación , Compuestos de Azabiciclo/síntesis química , Compuestos de Azabiciclo/farmacología , Compuestos de Azabiciclo/uso terapéutico , Azetidinas/administración & dosificación , Azetidinas/efectos adversos , Azetidinas/farmacología , Citosol/enzimología , Modelos Animales de Enfermedad , Femenino , Hígado/efectos de los fármacos , Hígado/parasitología , Macaca mulatta/parasitología , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Masculino , Ratones , Fenilalanina-ARNt Ligasa/antagonistas & inhibidores , Compuestos de Fenilurea/administración & dosificación , Compuestos de Fenilurea/síntesis química , Compuestos de Fenilurea/farmacología , Compuestos de Fenilurea/uso terapéutico , Plasmodium falciparum/citología , Plasmodium falciparum/enzimología , Seguridad
20.
ChemMedChem ; 11(19): 2194-2204, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27538856

RESUMEN

The potential of azaaurones as dual-stage antimalarial agents was investigated by assessing the effect of a small library of azaaurones on the inhibition of liver and intraerythrocytic lifecycle stages of the malaria parasite. The whole series was screened against the blood stage of a chloroquine-resistant Plasmodium falciparum strain and the liver stage of P. berghei, yielding compounds with dual-stage activity and sub-micromolar potency against erythrocytic parasites. Studies with genetically modified parasites, using a phenotypic assay based on the P. falciparum Dd2-ScDHODH line, which expresses yeast dihydroorotate dehydrogenase (DHODH), showed that one of the azaaurone derivatives has the potential to inhibit the parasite mitochondrial electron-transport chain. The global urgency in finding new therapies for malaria, especially against the underexplored liver stage, associated with chemical tractability of azaaurones, warrants further development of this chemotype. Overall, these results emphasize the azaaurone chemotype as a promising scaffold for dual-stage antimalarials.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Complejos de Coordinación/farmacología , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Hígado/efectos de los fármacos , Hígado/parasitología , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/síntesis química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium berghei/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA