Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35161405

RESUMEN

Optimal light conditions ensure the availability of sufficient photosynthetic assimilates for supporting the survival and growth of fruit organs in crops. One of the growing uses of light-emitting diodes (LEDs) in horticulture is intra-canopy illumination or LED-interlighting, providing supplemental light for intensively cultivated crops directly within their canopies. Originally developed and applied in environmentally controlled greenhouses in northern latitude countries, this technique is nowadays also being tested and studied in other regions of the world such as the Mediterranean region. In the present work, we applied intra-canopy illumination for bell pepper grown in passive high tunnels in the Jordan Valley using a commercial LED product providing cool-white light. The study included testing of daytime ('LED-D') and edge-of-daytime ('LED-N') illumination, as well as a detailed characterization of fruit set and fruit survival throughout the growth season. We found that both light regimes significantly improved the fruit set and survival during winter, with some benefit of LED-N illumination. Notably, we found that western-facing plants of illuminated sections had a higher contribution toward the increased winter fruit set and spring yield than that of illuminated eastern-facing plants. Greater plant height and fresh weight of western-facing plants of the illuminated sections support the yield results. The differences likely reflect higher photosynthetic assimilation of western-facing plants as compared to eastern-facing ones, due to the higher daily light integral and higher canopy temperature of the former. This study provides important implications for the use of intra-canopy lighting for crops grown at passive winter conditions and exemplifies the significance of geographical positioning, opening additional avenues of investigation for optimization of its use for improving fruit yield under variable conditions.

2.
Front Plant Sci ; 7: 768, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27313594

RESUMEN

Climate change is increasing mean temperatures and in the eastern Mediterranean is expected to decrease annual precipitation. The resulting increase in aridity may be too rapid for adaptation of tree species unless their gene pool already possesses variation in drought resistance. Vulnerability to embolism, estimated by the pressure inducing 50% loss of xylem hydraulic conductivity (P 50), is strongly associated with drought stress resistance in trees. Yet, previous studies on various tree species reported low intraspecific genetic variation for this trait, and therefore limited adaptive capacities to increasing aridity. Here we quantified differences in hydraulic efficiency (xylem hydraulic conductance) and safety (resistance to embolism) in four contrasting provenances of Pinus halepensis (Aleppo pine) in a provenance trial, which is indirect evidence for genetic differences. Results obtained with three techniques (bench dehydration, centrifugation and X-ray micro-CT) evidenced significant differentiation with similar ranking between provenances. Inter-provenance variation in P 50 correlated with pit anatomical properties (torus overlap and pit aperture size). These results suggest that adaptation of P. halepensis to xeric habitats has been accompanied by modifications of bordered pit function driven by variation in pit aperture. This study thus provides evidence that appropriate exploitation of provenance differences will allow continued forestry with P. halepensis in future climates of the Eastern Mediterranean.

3.
Physiol Plant ; 156(4): 478-96, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26497166

RESUMEN

Water quality, soil and climate can interact to limit photosynthesis and to increase photooxidative damage in sensitive plants. This research compared diffusive and non-diffusive limitations to photosynthesis as well as photorespiration of leaves of grapefruit trees in heavy clay and sandy soils having a previous history of treated wastewater (TWW) irrigation for >10 years, with different water qualities [fresh water (FW) vs TWW and sodium amended treated wastewater (TWW + Na)] in two arid climates (summer vs winter) and in orchard and lysimeter experiments. TWW irrigation increased salts (Na(+) and Cl(-) ), membrane leakage, proline and soluble sugar content, and decreased osmotic potentials in leaves of all experiments. Reduced leaf growth and higher stomatal and non-stomatal (i.e. mesophyll) limitations were found in summer and on clay soil for TWW and TWW + Na treatments in comparison to winter, sandy soil and FW irrigation, respectively. Stomatal closure, lower chlorophyll content and altered Rubisco activity are probable causes of higher limitations. On the other hand, non-photochemical quenching, an alternative energy dissipation pathway, was only influenced by water quality, independent of soil type and season. Furthermore, light and CO2 response curves were investigated for other possible causes of higher non-stomatal limitation. A higher proportion of non-cyclic electrons were directed to the O2 dependent pathway, and a higher proportion of electrons were diverted to photorespiration in summer than in winter. In conclusion, both diffusive and non-diffusive limitations contribute to the lower photosynthetic performance of leaves following TWW irrigation, and the response depends on soil type and environmental factors.


Asunto(s)
Adaptación Fisiológica , Citrus/fisiología , Sodio/farmacología , Suelo/química , Riego Agrícola , Respiración de la Célula , Clorofila/metabolismo , Citrus/efectos de los fármacos , Citrus/efectos de la radiación , Clima , Luz , Fotosíntesis , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Transpiración de Plantas , Estaciones del Año , Árboles , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA