Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 16(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36472402

RESUMEN

Obesity is a rising concern and associated with an increase in numerous cancers, often in a sex-specific manner. Preclinical models are needed to deconvolute the intersection between obesity, sex and melanoma. Here, we generated a zebrafish system that can be used as a platform for studying these factors. We studied how germline overexpression of Agrp along with a high-fat diet affects melanomas dependent on BRAFV600E and loss of p53. This revealed an increase in tumor incidence and area in male, but not female, obese fish, consistent with the clinical literature. We then determined whether this was further affected by additional somatic mutations in the clinically relevant genes rb1 or ptena/b. We found that the male obesogenic effect on melanoma was present with tumors generated with BRAF;p53;Rb1 but not BRAF;p53;Pten. These data indicate that both germline (Agrp) and somatic (BRAF, Rb1) mutations contribute to obesity-related effects in melanoma. Given the rapid genetic tools available in the zebrafish, this provides a high-throughput system to dissect the interactions of genetics, diet, sex and host factors in obesity-related cancers.


Asunto(s)
Melanoma , Pez Cebra , Animales , Femenino , Masculino , Pez Cebra/genética , Pez Cebra/metabolismo , Proteína Relacionada con Agouti/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Melanoma/genética , Melanoma/patología , Mutación/genética , Obesidad/complicaciones , Obesidad/genética , Dieta
2.
Cancer Discov ; 13(1): 194-215, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36259947

RESUMEN

In melanoma, predicting which tumors will ultimately metastasize guides treatment decisions. Transcriptional signatures of primary tumors have been utilized to predict metastasis, but which among these are driver or passenger events remains unclear. We used data from the adjuvant AVAST-M trial to identify a predictive gene signature in localized tumors that ultimately metastasized. Using a zebrafish model of primary melanoma, we interrogated the top genes from the AVAST-M signature in vivo. This identified GRAMD1B, a cholesterol transfer protein, as a bona fide metastasis suppressor, with a majority of knockout animals rapidly developing metastasis. Mechanistically, excess free cholesterol or its metabolite 27-hydroxycholesterol promotes invasiveness via activation of an AP-1 program, which is associated with increased metastasis in humans. Our data demonstrate that the transcriptional seeds of metastasis are embedded within localized tumors, suggesting that early targeting of these programs can be used to prevent metastatic relapse. SIGNIFICANCE: We analyzed human melanoma transcriptomics data to identify a gene signature predictive of metastasis. To rapidly test clinical signatures, we built a genetic metastasis platform in adult zebrafish and identified GRAMD1B as a suppressor of melanoma metastasis. GRAMD1B-associated cholesterol overload activates an AP-1 program to promote melanoma invasion. This article is highlighted in the In This Issue feature, p. 1.


Asunto(s)
Melanoma , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Recurrencia Local de Neoplasia/genética , Melanoma/patología , Perfilación de la Expresión Génica , Metástasis de la Neoplasia , Regulación Neoplásica de la Expresión Génica
3.
Elife ; 102021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34114952

RESUMEN

Lipid droplets are lipid storage organelles found in nearly all cell types from adipocytes to cancer cells. Although increasingly implicated in disease, current methods to study lipid droplets in vertebrate models rely on static imaging or the use of fluorescent dyes, limiting investigation of their rapid in vivo dynamics. To address this, we created a lipid droplet transgenic reporter in whole animals and cell culture by fusing tdTOMATO to Perilipin-2 (PLIN2), a lipid droplet structural protein. Expression of this transgene in transparent casper zebrafish enabled in vivo imaging of adipose depots responsive to nutrient deprivation and high-fat diet. Simultaneously, we performed a large-scale in vitro chemical screen of 1280 compounds and identified several novel regulators of lipolysis in adipocytes. Using our Tg(-3.5ubb:plin2-tdTomato) zebrafish line, we validated several of these novel regulators and revealed an unexpected role for nitric oxide in modulating adipocyte lipid droplets. Similarly, we expressed the PLIN2-tdTOMATO transgene in melanoma cells and found that the nitric oxide pathway also regulated lipid droplets in cancer. This model offers a tractable imaging platform to study lipid droplets across cell types and disease contexts using chemical, dietary, or genetic perturbations.


Organisms need fat molecules as a source of energy and as building blocks, but these 'lipids' can also damage cells if they are present in large amounts. Cells guard against such toxicity by safely sequestering lipids in specialized droplets that participate in a range of biological processes. For instance, these structures can quickly change size to store or release lipids depending on the energy demands of a cell. It is possible to image lipid droplets ­ using, for example, dyes that preferentially stain fat ­ but often these methods can only yield a snapshot: tracking lipid droplet dynamics over time remains difficult. Lumaquin, Johns et al. therefore set out to develop a new method that could label lipid droplets and monitor their behaviour 'live' in the cells of small, transparent zebrafish larvae. First, the fish were genetically manipulated so that a key protein found in lipid droplets would carry a fluorescent tag: this made the structures strongly fluorescent and easy to track over time. And indeed, Lumaquin, Johns et al. could monitor changes in the droplets depending on the fish diet, with the structures getting bigger when the animal received rich food, and shrinking when resources were scarce. Finally, experiments were conducted to screen for compounds that could lead to lipids being released in fat cells. The new imaging technique was then used to confirm the effect of these molecules in live cells, revealing an unexpected role for a signalling molecule known as nitric oxide, which also turned out to be regulating lipid droplets in cancerous cells. Further work then showed that drugs affecting nitric oxide could modulate lipid droplet size in both normal and tumor cells. This work has validated a new method to study the real-time behavior of lipid droplets and their responses to different stimuli in living cells. In the future, Lumaquin, Johns et al. hope that the technique will help to shed new light on how lipids are involved in both healthy and abnormal biological processes.


Asunto(s)
Adipocitos/metabolismo , Gotas Lipídicas/metabolismo , Proteínas Luminiscentes/metabolismo , Perilipina-2/metabolismo , Proteínas de Pez Cebra/metabolismo , Tejido Adiposo/metabolismo , Animales , Línea Celular Tumoral , Dieta Alta en Grasa , Metabolismo de los Lípidos , Lipólisis , Melanoma/metabolismo , Óxido Nítrico/metabolismo , Compuestos de Fenilurea/farmacología , Pez Cebra/metabolismo
4.
Immunity ; 50(6): 1381-1390.e5, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31103381

RESUMEN

The process of affinity maturation, whereby T and B cells bearing antigen receptors with optimal affinity to the relevant antigen undergo preferential expansion, is a key feature of adaptive immunity. Natural killer (NK) cells are innate lymphocytes capable of "adaptive" responses after cytomegalovirus (CMV) infection. However, whether NK cells are similarly selected on the basis of their avidity for cognate ligand is unknown. Here, we showed that NK cells with the highest avidity for the mouse CMV glycoprotein m157 were preferentially selected to expand and comprise the memory NK cell pool, whereas low-avidity NK cells possessed greater capacity for interferon-γ (IFN-γ) production. Moreover, we provide evidence for avidity selection occurring in human NK cells during human CMV infection. These results delineate how heterogeneity in NK cell avidity diversifies NK cell effector function during antiviral immunity, and how avidity selection might serve to produce the most potent memory NK cells.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Citomegalovirus/inmunología , Interacciones Huésped-Patógeno/inmunología , Células Asesinas Naturales/inmunología , Animales , Infecciones por Citomegalovirus/metabolismo , Citotoxicidad Inmunológica , Regulación de la Expresión Génica , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología , Interacciones Huésped-Patógeno/genética , Humanos , Memoria Inmunológica , Células Asesinas Naturales/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Muromegalovirus/inmunología , Subfamilia A de Receptores Similares a Lectina de Células NK/genética , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo , Especificidad del Receptor de Antígeno de Linfocitos T
5.
Mol Ther ; 26(2): 468-479, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29221806

RESUMEN

The use of engineered nucleases combined with a homologous DNA donor template can result in targeted gene correction of the sickle cell disease mutation in hematopoietic stem and progenitor cells. However, because of the high homology between the adjacent human ß- and δ-globin genes, off-target cleavage is observed at δ-globin when using some endonucleases targeted to the sickle mutation in ß-globin. Introduction of multiple double-stranded breaks by endonucleases has the potential to induce intergenic alterations. Using a novel droplet digital PCR assay and high-throughput sequencing, we characterized the frequency of rearrangements between the ß- and δ-globin paralogs when delivering these nucleases. Pooled CD34+ cells and colony-forming units from sickle bone marrow were treated with nuclease only or including a donor template and then analyzed for potential gene rearrangements. It was observed that, in pooled CD34+ cells and colony-forming units, the intergenic ß-δ-globin deletion was the most frequent rearrangement, followed by inversion of the intergenic fragment, with the inter-chromosomal translocation as the least frequent. No rearrangements were observed when endonuclease activity was restricted to on-target ß-globin cleavage. These findings demonstrate the need to develop site-specific endonucleases with high specificity to avoid unwanted gene alterations.


Asunto(s)
Edición Génica , Variación Genética , Células Madre Hematopoyéticas/metabolismo , Globinas beta/genética , Conversión Génica , Reordenamiento Génico , Marcación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas de Amplificación de Ácido Nucleico , Translocación Genética
6.
Mol Ther ; 24(9): 1561-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27406980

RESUMEN

Targeted genome editing technology can correct the sickle cell disease mutation of the ß-globin gene in hematopoietic stem cells. This correction supports production of red blood cells that synthesize normal hemoglobin proteins. Here, we demonstrate that Transcription Activator-Like Effector Nucleases (TALENs) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 nuclease system can target DNA sequences around the sickle-cell mutation in the ß-globin gene for site-specific cleavage and facilitate precise correction when a homologous donor template is codelivered. Several pairs of TALENs and multiple CRISPR guide RNAs were evaluated for both on-target and off-target cleavage rates. Delivery of the CRISPR/Cas9 components to CD34+ cells led to over 18% gene modification in vitro. Additionally, we demonstrate the correction of the sickle cell disease mutation in bone marrow derived CD34+ hematopoietic stem and progenitor cells from sickle cell disease patients, leading to the production of wild-type hemoglobin. These results demonstrate correction of the sickle mutation in patient-derived CD34+ cells using CRISPR/Cas9 technology.


Asunto(s)
Anemia de Células Falciformes/genética , Sistemas CRISPR-Cas , Edición Génica , Células Madre Hematopoyéticas/metabolismo , Mutación , Reparación del Gen Blanco , Globinas beta/genética , Anemia de Células Falciformes/terapia , Secuencia de Bases , Línea Celular , División del ADN , Marcación de Gen , Sitios Genéticos , Humanos , Unión Proteica , ARN Guía de Kinetoplastida , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
7.
Mol Ther Methods Clin Dev ; 2: 15012, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26029723

RESUMEN

Lentiviral vectors designed for the treatment of the hemoglobinopathies require the inclusion of regulatory and strong enhancer elements to achieve sufficient expression of the ß-globin transgene. Despite the inclusion of these elements, the efficacy of these vectors may be limited by transgene silencing due to the genomic environment surrounding the integration site. Barrier insulators can be used to give more consistent expression and resist silencing even with lower vector copies. Here, the barrier activity of an insulator element from the human ankyrin-1 gene was analyzed in a lentiviral vector carrying an antisickling human ß-globin gene. Inclusion of a single copy of the Ankyrin insulator did not affect viral titer, and improved the consistency of expression from the vector in murine erythroleukemia cells. The presence of the Ankyrin insulator element did not change transgene expression in human hematopoietic cells in short-term erythroid culture or in vivo in primary murine transplants. However, analysis in secondary recipients showed that the lentiviral vector with the Ankyrin element preserved transgene expression, whereas expression from the vector lacking the Ankyrin insulator decreased in secondary recipients. These studies demonstrate that the Ankyrin insulator may improve long-term ß-globin expression in hematopoietic stem cells for gene therapy of hemoglobinopathies.

8.
Blood ; 125(17): 2597-604, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25733580

RESUMEN

Sickle cell disease (SCD) is characterized by a single point mutation in the seventh codon of the ß-globin gene. Site-specific correction of the sickle mutation in hematopoietic stem cells would allow for permanent production of normal red blood cells. Using zinc-finger nucleases (ZFNs) designed to flank the sickle mutation, we demonstrate efficient targeted cleavage at the ß-globin locus with minimal off-target modification. By co-delivering a homologous donor template (either an integrase-defective lentiviral vector or a DNA oligonucleotide), high levels of gene modification were achieved in CD34(+) hematopoietic stem and progenitor cells. Modified cells maintained their ability to engraft NOD/SCID/IL2rγ(null) mice and to produce cells from multiple lineages, although with a reduction in the modification levels relative to the in vitro samples. Importantly, ZFN-driven gene correction in CD34(+) cells from the bone marrow of patients with SCD resulted in the production of wild-type hemoglobin tetramers.


Asunto(s)
Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Terapia Genética , Células Madre Hematopoyéticas/metabolismo , Mutación , Globinas beta/genética , Anemia de Células Falciformes/patología , Animales , Antígenos CD34/análisis , Secuencia de Bases , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Células Cultivadas , Endodesoxirribonucleasas/metabolismo , Sangre Fetal/trasplante , Sitios Genéticos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/patología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Datos de Secuencia Molecular , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA