Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 297(4): 101112, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34428449

RESUMEN

S-acylation, also known as palmitoylation, is the most widely prevalent form of protein lipidation, whereby long-chain fatty acids get attached to cysteine residues facing the cytosol. In humans, 23 members of the zDHHC family of integral membrane enzymes catalyze this modification. S-acylation is critical for the life cycle of many enveloped viruses. The Spike protein of SARS-CoV-2, the causative agent of COVID-19, has the most cysteine-rich cytoplasmic tail among known human pathogens in the closely related family of ß-coronaviruses; however, it is unclear which of the cytoplasmic cysteines are S-acylated, and what the impact of this modification is on viral infectivity. Here we identify specific cysteine clusters in the Spike protein of SARS-CoV-2 that are targets of S-acylation. Interestingly, when we investigated the effect of the cysteine clusters using pseudotyped virus, mutation of the same three clusters of cysteines severely compromised viral infectivity. We developed a library of expression constructs of human zDHHC enzymes and used them to identify zDHHC enzymes that can S-acylate SARS-CoV-2 Spike protein. Finally, we reconstituted S-acylation of SARS-CoV-2 Spike protein in vitro using purified zDHHC enzymes. We observe a striking heterogeneity in the S-acylation status of the different cysteines in our in cellulo experiments, which, remarkably, was recapitulated by the in vitro assay. Altogether, these results bolster our understanding of a poorly understood posttranslational modification integral to the SARS-CoV-2 Spike protein. This study opens up avenues for further mechanistic dissection and lays the groundwork toward developing future strategies that could aid in the identification of targeted small-molecule modulators.


Asunto(s)
COVID-19/patología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Acilación , Aciltransferasas/genética , Aciltransferasas/metabolismo , Secuencia de Aminoácidos , COVID-19/virología , Cisteína/metabolismo , Células HEK293 , Humanos , Lipoilación , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus
2.
mBio ; 12(2)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33727347

RESUMEN

An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP, and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.IMPORTANCE Viral envelope glycoproteins are an important structural component on the surfaces of enveloped viruses that direct virus binding and entry and also serve as targets for the host adaptive immune response. In this study, we investigate the mechanism of action of the MARCH family of cellular proteins that disrupt the trafficking and virion incorporation of viral glycoproteins across several virus families. This research provides novel insights into how host cell factors antagonize viral replication, perhaps opening new avenues for therapeutic intervention in the replication of a diverse group of highly pathogenic enveloped viruses.


Asunto(s)
Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Aminoácidos , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Interferones/farmacología , Espacio Intracelular/metabolismo , Proteínas de la Membrana/genética , Mutación , Virus ARN/clasificación , Virus ARN/metabolismo , Especificidad de la Especie , Ubiquitina-Proteína Ligasas/genética , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Virión/metabolismo , Replicación Viral
3.
bioRxiv ; 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33532773

RESUMEN

An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell-surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.

4.
PLoS One ; 13(5): e0196890, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29738524

RESUMEN

The purple sea urchin, Strongylocentrotus purpuratus, has a complex and robust immune system that is mediated by a number of multi-gene families including the SpTransformer (SpTrf) gene family (formerly Sp185/333). In response to immune challenge from bacteria and various pathogen-associated molecular patterns, the SpTrf genes are up-regulated in sea urchin phagocytes and express a diverse array of SpTrf proteins. We show here that SpTrf proteins from coelomocytes and isolated by nickel affinity (cNi-SpTrf) bind to Gram-positive and Gram-negative bacteria and to Baker's yeast, Saccharomyces cerevisiae, with saturable kinetics and specificity. cNi-SpTrf opsonization of the marine bacteria, Vibrio diazotrophicus, augments phagocytosis, however, opsonization by the recombinant protein, rSpTrf-E1, does not. Binding by cNi-SpTrf proteins retards growth rates significantly for several species of bacteria. SpTrf proteins, previously thought to be strictly membrane-associated, are secreted from phagocytes in short term cultures and bind V. diazotrophicus that are located both outside of and within phagocytes. Our results demonstrate anti-microbial activities of native SpTrf proteins and suggest variable functions among different SpTrf isoforms. Multiple isoforms may act synergistically to detect a wide array of pathogens and provide flexible and efficient host immunity.


Asunto(s)
Inmunidad Innata/genética , Fagocitosis/genética , Proteínas Recombinantes/genética , Strongylocentrotus purpuratus/genética , Animales , Variación Genética , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/genética , Bacterias Grampositivas/inmunología , Bacterias Grampositivas/patogenicidad , Fagocitos/inmunología , Fagocitos/microbiología , Fagocitosis/inmunología , Proteínas Recombinantes/inmunología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/inmunología , Strongylocentrotus purpuratus/inmunología , Strongylocentrotus purpuratus/microbiología
5.
Front Immunol ; 8: 725, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28713368

RESUMEN

The complex innate immune system of sea urchins is underpinned by several multigene families including the SpTransformer family (SpTrf; formerly Sp185/333) with estimates of ~50 members, although the family size is likely variable among individuals of Strongylocentrotus purpuratus. The genes are small with similar structure, are tightly clustered, and have several types of repeats in the second of two exons and that surround each gene. The density of repeats suggests that the genes are positioned within regions of genomic instability, which may be required to drive sequence diversification. The second exon encodes the mature protein and is composed of blocks of sequence called elements that are present in mosaics of defined element patterns and are the major source of sequence diversity. The SpTrf genes respond swiftly to immune challenge, but only a single gene is expressed per phagocyte. Many of the mRNAs appear to be edited and encode proteins with altered and/or missense sequence that are often truncated, of which some may be functional. The standard SpTrf protein structure is an N-terminal glycine-rich region, a central RGD motif, a histidine-rich region, and a C-terminal region. Function is predicted from a recombinant protein, rSpTransformer-E1 (rSpTrf-E1), which binds to Vibrio and Saccharomyces, but not to Bacillus, and binds tightly to lipopolysaccharide, ß-1,3-glucan, and flagellin, but not to peptidoglycan. rSpTrf-E1 is intrinsically disordered but transforms to α helical structure in the presence of binding targets including lipopolysaccharide, which may underpin the characteristics of binding to multiple targets. SpTrf proteins associate with coelomocyte membranes, and rSpTrf-E1 binds specifically to phosphatidic acid (PA). When rSpTrf-E1 is bound to PA in liposome membranes, it induces morphological changes in liposomes that correlate with PA clustering and leakage of luminal contents, and it extracts or removes PA from the bilayer. The multitasking activities of rSpTrf-E1 infer multiple and perhaps overlapping activities for the hundreds of native SpTrf proteins that are produced by individual sea urchins. This likely generates a flexible and highly protective immune system for the sea urchin in its marine habitat that it shares with broad arrays of microbes that may be pathogens and opportunists.

6.
Front Immunol ; 8: 481, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553283

RESUMEN

The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that functions without adaptive capabilities and responds to pathogens effectively by expressing the highly diverse SpTransformer gene family (formerly the Sp185/333 gene family). The swift gene expression response and the sequence diversity of SpTransformer cDNAs suggest that the encoded proteins have immune functions. Individual sea urchins can express up to 260 distinct SpTransformer proteins, and their diversity suggests that different versions may have different functions. Although the deduced proteins are diverse, they share an overall structure of a hydrophobic leader, a glycine-rich N-terminal region, a histidine-rich region, and a C-terminal region. Circular dichroism analysis of a recombinant SpTransformer protein, rSpTransformer-E1 (rSpTrf-E1) demonstrates that it is intrinsically disordered and transforms to α helical in the presence of buffer additives and binding targets. Although native SpTrf proteins are associated with the membranes of perinuclear vesicles in the phagocyte class of coelomocytes and are present on the surface of small phagocytes, they have no predicted transmembrane region or conserved site for glycophosphatidylinositol linkage. To determine whether native SpTrf proteins associate with phagocyte membranes through interactions with lipids, when rSpTrf-E1 is incubated with lipid-embedded nylon strips, it binds to phosphatidic acid (PA) through both the glycine-rich region and the histidine-rich region. Synthetic liposomes composed of PA and phosphatidylcholine show binding between rSpTrf-E1 and PA by fluorescence resonance energy transfer, which is associated with leakage of luminal contents suggesting changes in lipid organization and perhaps liposome lysis. Interactions with liposomes also change membrane curvature leading to liposome budding, fusion, and invagination, which is associated with PA clustering induced by rSpTrf-E1 binding. Longer incubations result in the extraction of PA from the liposomes, which form disorganized clusters. CD shows that when rSpTrf-E1 binds to PA, it changes its secondary structure from disordered to α helical. These results provide evidence for how SpTransformer proteins may associate with molecules that have exposed phosphates including PA on cell membranes and how the characteristic of protein multimerization may drive changes in the organization of membrane lipids.

7.
J Immunol ; 198(7): 2957-2966, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28242650

RESUMEN

The purple sea urchin, Strongylocentrotus purpuratus, expresses a diverse immune response protein family called Sp185/333. A recombinant Sp185/333 protein, previously called rSp0032, shows multitasking antipathogen binding ability, suggesting that the protein family mediates a flexible and effective immune response to multiple foreign cells. Bioinformatic analysis predicts that rSp0032 is intrinsically disordered, and its multiple binding characteristic suggests structural flexibility to adopt different conformations depending on the characteristics of the target. To address the flexibility and structural shifting hypothesis, circular dichroism analysis of rSp0032 suggests that it transforms from disordered (random coil) to α helical structure. This structural transformation may be the basis for the strong affinity between rSp0032 and several pathogen-associated molecular patterns. The N-terminal Gly-rich fragment of rSp0032 and the C-terminal His-rich fragment show unique transformations by either intensifying the α helical structure or changing from α helical to ß strand depending on the solvents and molecules added to the buffer. Based on these results, we propose a name change from rSp0032 to rSpTransformer-E1 to represent its flexible structural conformations and its E1 element pattern. Given that rSpTransformer-E1 shifts its conformation in the presence of solvents and binding targets and that all Sp185/333 proteins are predicted to be disordered, many or all of these proteins may undergo structural transformation to enable multitasking binding activity toward a wide range of targets. Consequently, we also propose an overarching name change for the entire family from Sp185/333 proteins to SpTransformer proteins.


Asunto(s)
Inmunidad Innata/inmunología , Strongylocentrotus purpuratus/inmunología , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Biología Computacional , Variación Genética , Fragmentos de Péptidos/inmunología , Proteínas/inmunología
8.
Immunobiology ; 221(8): 889-903, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27020848

RESUMEN

The purple sea urchin, Strongylocentrotus purpuratus, possesses a sophisticated innate immune system that responds to microbes effectively by swift expression of the highly diverse Sp185/333 gene family. The Sp185/333 proteins are predicted to have anti-pathogen functions based on inducible gene expression and their significant sequence diversity. Sp185/333 proteins are all predicted to be intrinsically disordered and do not exhibit sequence similarities to other known proteins. To test the anti-pathogen hypothesis, a recombinant Sp185/333 protein, rSp0032, was evaluated and found to exhibit specific binding to marine Vibrio diazotrophicus and to Saccharomyces cerevisiae, but not to two Bacillus species. rSp0032 also binds to LPS, ß-1,3-glucan and flagellin but not to peptidoglycan. rSp0032 binding to LPS can be competed by LPS, ß-1,3-glucan and flagellin but not by peptidoglycan. We speculate that the predicted intrinsically disordered structure of rSp0032 may adapt to different conformations in binding to a limited number of PAMPs and pathogens. Given that rSp0032 binds to a range of targets, and that up to 260 different Sp185/333 proteins can be expressed per individual sea urchin, this family of immune response proteins may facilitate effective host protection against a broad array of potential pathogens encountered in the marine environment.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/inmunología , Saccharomyces cerevisiae/inmunología , Strongylocentrotus purpuratus/inmunología , Vibrio/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Strongylocentrotus purpuratus/química , Strongylocentrotus purpuratus/genética
10.
Dev Comp Immunol ; 35(9): 959-74, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21182860

RESUMEN

The arms race between hosts and pathogens (and other non-self) drives the molecular diversification of immune response genes in the host. Over long periods of evolutionary time, many different defense strategies have been employed by a wide variety of invertebrates. We review here penaeidins and crustins in crustaceans, the allorecognition system encoded by fuhc, fester and Uncle fester in a colonial tunicate, Dscam and PGRPs in arthropods, FREPs in snails, VCBPs in protochordates, and the Sp185/333 system in the purple sea urchin. Comparisons among immune systems, including those reviewed here have not identified an immune specific regulatory "genetic toolkit", however, repeatedly identified sequences (or "building materials" on which the tools act) are present in a broad range of immune systems. These include a Toll/TLR system, a primitive complement system, an LPS binding protein, and a RAG core/Transib element. Repeatedly identified domains and motifs that function in immune proteins include NACHT, LRR, Ig, death, TIR, lectin domains, and a thioester motif. In addition, there are repeatedly identified mechanisms (or "construction methods") that generate sequence diversity in genes with immune function. These include genomic instability, duplications and/or deletions of sequences and the generation of clusters of similar genes or exons that appear as families, gene recombination, gene conversion, retrotransposition, alternative splicing, multiple alleles for single copy genes, and RNA editing. These commonly employed "materials and methods" for building and maintaining an effective immune system that might have been part of that ancestral system appear now as a fragmented and likely incomplete set, likely due to the rapid evolutionary change (or loss) of host genes that are under pressure to keep pace with pathogen diversity.


Asunto(s)
Sistema Inmunológico/inmunología , Inmunoglobulinas/inmunología , Isoantígenos/inmunología , Secuencias de Aminoácidos/genética , Animales , Diversidad de Anticuerpos/genética , Evolución Biológica , Proteínas del Sistema Complemento/inmunología , Inestabilidad Genómica , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunoglobulinas/genética , Invertebrados , Fisiología Comparada , Receptores Toll-Like/inmunología
11.
Int J Parasitol ; 40(7): 819-31, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20083115

RESUMEN

Successful colonization of a compatible snail host by a digenetic trematode miracidium initiates a complex, proliferative development program requiring weeks to reach culmination in the form of production of cercariae which, once started, may persist for the remainder of the life span of the infected snail. How are such proliferative and invasive parasites able to circumvent host defenses and establish chronic infections? Using a microarray designed to monitor the internal defense and stress-related responses of the freshwater snail Biomphalaria glabrata, we have undertaken a time course study to monitor snail responses following exposure to two different trematode species to which the snail is susceptible: the medically important Schistosoma mansoni, exemplifying sporocyst production in its larval development, or Echinostoma paraensei, representing an emphasis on rediae production in its larval development. We sampled eight time points (0.5, 1, 2, 4, 8, 16 and 32 days p.i.) that cover the period required for cercariae to be produced. Following exposure to S. mansoni, there was a preponderance of up-regulated over down-regulated array features through 2 days p.i. but by 4 days p.i. and thereafter, this pattern was strongly reversed. For E. paraensei, there was a preponderance of down-regulated array features over up-regulated features at even 0.5 days p.i., a pattern that persists throughout the course of infection except for 1 day p.i., when up-regulated array features slightly outnumbered down-regulated features. Examination of particular array features revealed several that were up-regulated by both parasites early in the course of infection and one, fibrinogen related protein 4 (FREP 4), that remained significantly elevated throughout the course of infection with either parasite, effectively serving as a marker of infection. Many defense-related transcripts were persistently down-regulated, including several fibrinogen-containing lectins and homologs of molecules best known from vertebrate phagocytic cells. Our results are consistent with earlier studies suggesting that both parasites are able to interfere with host defense responses, including a tendency for E. paraensei to do so more rapidly and strongly than S. mansoni. They further suggest mechanisms for how trematodes are able to establish the chronic infections necessary for their continued success.


Asunto(s)
Biomphalaria/inmunología , Biomphalaria/parasitología , Echinostoma/inmunología , Perfilación de la Expresión Génica , Schistosoma mansoni/inmunología , Estrés Fisiológico , Animales , Biomphalaria/genética , Regulación hacia Abajo , Echinostoma/crecimiento & desarrollo , Evasión Inmune , Análisis de Secuencia por Matrices de Oligonucleótidos , Schistosoma mansoni/crecimiento & desarrollo , Factores de Tiempo , Regulación hacia Arriba
12.
Adv Exp Med Biol ; 708: 260-301, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21528703

RESUMEN

A survey for immune genes in the genome for the purple sea urchin has shown that the immune system is complex and sophisticated. By inference, immune responses of all echinoderms maybe similar. The immune system is mediated by several types of coelomocytes that are also useful as sensors of environmental stresses. There are a number of large gene families in the purple sea urchin genome that function in immunity and of which at least one appears to employ novel approaches for sequence diversification. Echinoderms have a simpler complement system, a large set of lectin genes and a number of antimicrobial peptides. Profiling the immune genes expressed by coelomocytes and the proteins in the coelomic fluid provide detailed information about immune functions in the sea urchin. The importance of echinoderms in maintaining marine ecosystem stability and the disastrous effects of their removal due to disease will require future collaborations between ecologists and immunologists working towards understanding and preserving marine habitats.


Asunto(s)
Erizos de Mar/inmunología , Animales , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/inmunología , Sistema Inmunológico/inmunología , Lectinas/genética , Lectinas/inmunología , Erizos de Mar/genética
13.
Mol Immunol ; 47(4): 849-60, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19962194

RESUMEN

A 70-mer-oligonucleotide-based microarray (1152 features) that emphasizes stress and immune responses factors was constructed to study transcriptomic responses of the snail Biomphalaria glabrata to different immune challenges. In addition to sequences with relevant putative ID and Gene Ontology (GO) annotation, the array features non-immune factors and unknown B. glabrata ESTs for functional gene discovery. The transcription profiles of B. glabrata (3 biological replicates, each a pool of 5 snails) were recorded at 12h post-wounding, exposure to Gram negative or Gram positive bacteria (Escherichia coli and Micrococcus luteus, respectively), or infection with compatible trematode parasites (Schistosoma mansoni or Echinostoma paraensei, 20 miracidia/snail), relative to controls, using universal reference RNA. The data were subjected to Significance Analysis for Microarrays (SAM), with a false positive rate (FPR)

Asunto(s)
Bacterias/inmunología , Biomphalaria/genética , Biomphalaria/inmunología , Echinostoma/inmunología , Perfilación de la Expresión Génica , Parásitos/inmunología , Schistosoma mansoni/inmunología , Animales , Biomphalaria/microbiología , Biomphalaria/parasitología , Regulación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Fisiológico/genética , Estrés Fisiológico/inmunología , Factores de Tiempo , Transcripción Genética
14.
Immunogenetics ; 61(1): 27-41, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19009288

RESUMEN

Killer cell Ig-like receptors (KIRs) modulate the cytotoxic effects of natural killer cells. In primates, the KIRs are highly diverse as a consequence of variation in gene content, alternative domain composition, and loci polymorphism. We analyzed a bacterial artificial chromosome (BAC) clone draft sequence spanning the owl monkey KIR cluster. The draft sequence had seven ordered yet unconnected contigs containing six full-length and two partial gene models, flanked by the LILRB and FcAR framework genes. Gene models were predicted to encode KIRs with inhibitory, activating, or dual functionality. Four gene models encoded three Ig domain receptors, while three others encoded molecules with four Ig domains. The additional domain resulted from an insertion in tandem of a 2,101 bp fragment containing the last 289 bp of intron 2, exon 3, and intron 3, resulting in molecules with two D0 domains. Re-screening of the owl monkey BAC library and sequencing of partial cDNAs from an owl monkey yielded five additional KIRs, four of which encoded receptors with short cytoplasmic domains with premature stop codons due to either a single nucleotide substitution or deletion or the absence of exon 8. Phylogenetic analysis by domains showed that owl monkey KIRs were monophyletic, clustering independently from other primate KIR lineages. Retroelements found in introns, however, were shared by KIRs from different primate lineages. This suggests that the owl monkey inherited a KIR cluster with a rich history of exon shuffling upon which positive selection for ligand binding operated to diversify the receptors in a lineage-specific fashion.


Asunto(s)
Aotidae/genética , Filogenia , Primates/genética , Receptores KIR/genética , Secuencia de Aminoácidos , Animales , Aotidae/inmunología , Cromosomas Artificiales Bacterianos/genética , Codón sin Sentido/genética , Secuencia de Consenso , Mapeo Contig , Evolución Molecular , Exones/genética , Biblioteca de Genes , Haplotipos/genética , Humanos , Ligandos , Masculino , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/genética , Recombinación Genética , Retroelementos/genética , Selección Genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie
15.
J Invertebr Pathol ; 99(2): 192-203, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18590737

RESUMEN

The snail Biomphalaria glabrata (Gastropoda, Mollusca) is an important intermediate host for the human parasite Schistosoma mansoni (Digenea, Trematoda). Anti-pathogen responses of B. glabrata were studied towards a better understanding of snail immunity and host-parasite compatibility. Open reading frame ESTs (ORESTES) were sampled from different transcriptomes of M line strain B. glabrata, 12h post-challenge with Escherichia coli (Gram-negative), Micrococcus luteus (Gram-positive) bacteria or compatible S. mansoni, and controls. The resulting 3123 ORESTES represented 2129 unique sequences (373 clusters, 1756 singletons). Of these, 175 (8.1%) were putative defense factors, including lectins, antimicrobial peptides and components of various immune-effector systems. Comparison of biological processes (GO-terms) within different transcriptomes indicated that B. glabrata increased oxygen transport and metal binding in reaction to all challenges. Comprehensive comparisons of transcriptomes revealed that responses of B. glabrata against bacteria were similar to each other and differed from the ineffective response to S. mansoni. Furthermore, the response to S. mansoni infection was less comprehensive than that to bacteria. Many novel (unknown) sequences were recovered in association with particular challenges. B. glabrata possesses multi-faceted, potent immune defenses. This agrees with the notion that S. mansoni is capable of immune-evasion and prevents effective host defense responses in order to survive in B. glabrata. Future analysis of the numerous unknown sequences recovered from challenged snails may reveal novel immune factors and provide increased understanding of immunity of B. glabrata in relation to parasite-host compatibility.


Asunto(s)
Biomphalaria/genética , Biomphalaria/inmunología , Biomphalaria/parasitología , Perfilación de la Expresión Génica , Esquistosomiasis mansoni/inmunología , Animales , Infecciones Bacterianas/inmunología , Secuencia de Bases , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Schistosoma mansoni
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...