Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Acc Chem Res ; 56(13): 1850-1861, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37352016

RESUMEN

ConspectusSensors are ubiquitous, and their importance is only going to increase across many areas of modern technology. In this respect, hydrogen gas (H2) sensors are no exception since they allow mitigation of the inherent safety risks associated with mixtures of H2 and air. The deployment of H2 technologies is rapidly accelerating in emerging energy, transport, and green steel-making sectors, where not only safety but also process monitoring sensors are in high demand. To meet this demand, cost-effective and scalable routes for mass production of sensing materials are required. Here, the state-of-the-art often resorts to processes derived from the microelectronics industry where surface-based micro- and nanofabrication are the methods of choice and where (H2) sensor manufacturing is no exception.In this Account, we discuss how our recent efforts to develop sensors based on plasmonic plastics may complement the current state-of-the-art. We explore a new H2 sensor paradigm, established through a series of recent publications, that combines (i) the plasmonic optical H2 detection principle and (ii) bulk-processed nanocomposite materials. In particular, plasmonic plastic nanocomposite sensing materials are described that comprise plasmonic H2-sensitive colloidally synthesized nanoparticles dispersed in a polymer matrix and enable the additive manufacturing of H2 sensors in a cost-effective and scalable way. We first discuss the concept of plasmonic plastic nanocomposite materials for the additive manufacturing of an active plasmonic sensing material on the basis of the three key components that require individual and concerted optimization: (i) the plasmonic sensing metal nanoparticles, (ii) the surfactant/stabilizer molecules on the nanoparticle surface from colloidal synthesis, and (iii) the polymer matrix. We then introduce the working principle of plasmonic H2 detection, which relies on the selective absorption of H species into hydride-forming metal nanoparticles that, in turn, induces distinct changes in their optical plasmonic signature in proportion to the H2 concentration in the local atmosphere. Subsequently, we assess the roles of the key components of a plasmonic plastic for H2 sensing, where we have established that (i) alloying Pd with Au and Cu eliminates hysteresis and introduces intrinsic deactivation resistance at ambient conditions, (ii) surfactant/stabilizer molecules can significantly accelerate and decelerate H2 sorption and thus sensor response, and (iii) polymer coatings accelerate sensor response, reduce the limit of detection (LoD), and enable molecular filtering for sensor operation in chemically challenging environments. Based on these insights, we discuss the rational development and detailed characterization of bulk-processed plasmonic plastics based on glassy and fluorinated matrix polymers and on tailored flow-chemistry-based synthesis of Pd and PdAu alloy colloidal nanoparticles with optimized stabilizer molecules. In their champion implementation, they enable highly stable H2 sensors with response times in the 2 s range and an LoD of few 10 ppm of H2. To put plasmonic plastics in a wider perspective, we also report their implementation using different polymer matrix materials that can be used for 3D printing and (an)isotropic Au nanoparticles that enable the manufacturing of macroscopic plasmonic objects with, if required, dichroic optical properties and in amounts that can be readily upscaled. We advertise that melt processing of plasmonic plastic nanocomposites is a viable route toward the realization of plasmonic objects and sensors, produced by scalable colloidal synthesis and additive manufacturing techniques.

2.
Chemosphere ; 294: 133618, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35066072

RESUMEN

Hydrophobization of hemicellulose causes melt processing and makes them stretchable thermoplastics. Understanding how native and/or appended side chains in various hemicelluloses after chemical modification affect melt processing and material properties can help in the development of products for film packaging and substrates for stretchable electronics applications. Herein, we describe a one-step and two-step strategy for the fabrication of flexible and stretchable thermoplastics prepared by compression molding of two structurally different arabinoxylans (AX). For one-step synthesis, the n-butyl glycidyl ether epoxide ring was opened to the hydroxyl group, resulting in the introduction of alkoxide side chains. The first step in the two-step synthesis was periodate oxidation. Because the melt processability for AXs having low arabinose to xylose ratio (araf/xylp<0.5) have been limited, two structurally distinct AXs extracted from wheat bran (AXWB, araf/xylp = 3/4) and barley husk (AXBH, araf/xylp = 1/4) were used to investigate the effect of araf/xylp and hydrophobization on the melt processability and properties of the final material. Melt compression processability was achieved in AXBH derived samples. DSC and DMA confirmed that the thermoplastics derived from AXWB and AXBH had dual and single glass transition (Tg) characteristics, respectively, but the thermoplastics derived from AXBH had lower stretchability (maximum 160%) compared to the AXWB samples (maximum 300%). Higher araf/xylp values, and thus longer alkoxide side chains in AXWB-derived thermoplastics, explain the stretchability differences.


Asunto(s)
Hordeum , Xilanos , Biomasa , Fibras de la Dieta , Hordeum/química , Xilanos/química
3.
Small ; 18(5): e2102813, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34816573

RESUMEN

Stretchable conducting materials are appealing for the design of unobtrusive wearable electronic devices. Conjugated polymers with oligoethylene glycol side chains are excellent candidate materials owing to their low elastic modulus and good compatibility with polar stretchable polymers. Here, electrically conducting elastomeric blend fibers with high stretchability, wet spun from a blend of a doped polar polythiophene with tetraethylene glycol side chains and a polyurethane are reported. The wet-spinning process is versatile, reproducible, scalable, and produces continuous filaments with a diameter ranging from 30 to 70 µm. The fibers are stretchable up to 480% even after chemical doping with iron(III) p-toluenesulfonate hexahydrate and exhibit an electrical conductivity of up to 7.4 S cm-1 , which represents a record combination of properties for conjugated polymer-based fibers. The fibers remain conductive during elongation until fiber fracture and display excellent long-term stability at ambient conditions. Cyclic stretching up to 50% strain for at least 400 strain cycles reveals that the doped fibers exhibit high cyclic stability and retain their electrical conductivity. Finally, a directional strain sensing device, which makes use of the linear increase in resistance of the fibers up to 120% strain is demonstrated.


Asunto(s)
Compuestos Férricos , Dispositivos Electrónicos Vestibles , Elasticidad , Conductividad Eléctrica , Electricidad
4.
Mater Horiz ; 9(1): 433-443, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34787612

RESUMEN

Molecular doping of a polythiophene with oligoethylene glycol side chains is found to strongly modulate not only the electrical but also the mechanical properties of the polymer. An oxidation level of up to 18% results in an electrical conductivity of more than 52 S cm-1 and at the same time significantly enhances the elastic modulus from 8 to more than 200 MPa and toughness from 0.5 to 5.1 MJ m-3. These changes arise because molecular doping strongly influences the glass transition temperature Tg and the degree of π-stacking of the polymer, as indicated by both X-ray diffraction and molecular dynamics simulations. Surprisingly, a comparison of doped materials containing mono- or dianions reveals that - for a comparable oxidation level - the presence of multivalent counterions has little effect on the stiffness. Evidently, molecular doping is a powerful tool that can be used for the design of mechanically robust conducting materials, which may find use within the field of flexible and stretchable electronics.


Asunto(s)
Polímeros , Tiofenos , Módulo de Elasticidad , Conductividad Eléctrica , Polímeros/química , Tiofenos/química
5.
MRS Bull ; 46(6): 491-501, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34720389

RESUMEN

ABSTRACT: To realize the full gamut of functions that are envisaged for electronic textiles (e-textiles) a range of semiconducting, conducting and electrochemically active materials are needed. This article will discuss how metals, conducting polymers, carbon nanotubes, and two-dimensional (2D) materials, including graphene and MXenes, can be used in concert to create e-textile materials, from fibers and yarns to patterned fabrics. Many of the most promising architectures utilize several classes of materials (e.g., elastic fibers composed of a conducting material and a stretchable polymer, or textile devices constructed with conducting polymers or 2D materials and metal electrodes). While an increasing number of materials and devices display a promising degree of wash and wear resistance, sustainability aspects of e-textiles will require greater attention.

6.
Dan Med J ; 68(10)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34558407

RESUMEN

INTRODUCTION Few Scandinavian studies have studied seasonal variations in paediatric fractures, and the studies that have focused on individual fracture sites. Furthermore, their findings do not coincide as they have described peaks in different seasons. Therefore, we described seasonal variation in the incidence rate (IR) of all paediatric fractures in the 1996-2019 period within a Danish population. METHODS We extracted data from the existing emergency room register at Odense University Hospital and included all fractures sustained by children aged 0-14 years and living in Odense Municipality. Seasonal and monthly IR were calculated using population counts stratified by age, gender and fracture site. RESULTS We recorded a significant increase in IR in spring and summer, except for a drop in July. For boys, the IR ranged from 206 in December to 404 per 10,000 person-years in June. For girls, the incidence ranged from 156 in December to 317 in May. Fractures were more frequent in the upper extremities and were up to six-fold more frequent in the epiphysis and metaphysis than in the shafts. All fracture sites showed a peak in spring and summer, suggesting that all fracture sites are subject to seasonal variation, especially the ones near the epiphysis. CONCLUSIONS The fracture peak observed in spring and summer corresponds to an increase in physical activity. The low incidence registered in July corresponds to a low level of sport activities during the summer vacations and families going on vacation in the countryside or travelling abroad. This study gives useful information for coordinating the right resources at hospitals. FUNDING none TRIAL REGISTRATION not relevant.


Asunto(s)
Fracturas Óseas , Niño , Ejercicio Físico , Femenino , Fracturas Óseas/epidemiología , Humanos , Incidencia , Masculino , Estaciones del Año
7.
Int J Biol Macromol ; 188: 491-500, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34389389

RESUMEN

Hemicelluloses are regarded as one of the first candidates for the development of value-added materials due to their renewability, abundance, and functionality. However, because most hemicelluloses are brittle, they can only be processed as a solution and cannot be processed using industrial melt-based polymer processing techniques. In this study, arabinoxylan (AX) was hydrophobized by incorporating butyl glycidyl ether (BuGE) into the hydroxyl groups through the opening of the BuGE epoxide ring, yielding alkoxy alcohols with terminal ethers. The formed BuGE derivatives were melt processable and can be manufactured into stretchable thermoplastic films through compression molding, which has never been done before with hemicellulose modified in a single step. The structural and thermomechanical properties of the one-step synthesis approach were compared to those of a two-step synthesis with a pre-activation step to demonstrate its robustness. The strain at break for the one-step synthesized AX thermoplastic with 3 mol of BuGE is ≈200%. These findings suggest that thermoplastic polymers can be composited with hemicelluloses or that thermoplastic polymers made entirely of hemicelluloses can be designed as packaging and stretchable electronics supports.


Asunto(s)
Compuestos Epoxi/química , Plásticos/química , Polisacáridos/química , Xilanos/química , Interacciones Hidrofóbicas e Hidrofílicas , Plásticos/síntesis química , Polímeros/síntesis química , Polímeros/química
8.
Adv Mater ; 33(27): e2100714, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34048610

RESUMEN

Poly(3-hexylthiophene) (P3HT) is found to be a highly effective conductivity-reducing additive for low-density polyethylene (LDPE), which introduces a new application area to the field of conjugated polymers. Additives that reduce the direct-current (DC) electrical conductivity of an insulation material at high electric fields have gained a lot of research interest because they may facilitate the design of more efficient high-voltage direct-current power cables. An ultralow concentration of regio-regular P3HT of 0.0005 wt% is found to reduce the DC conductivity of LDPE threefold, which translates into the highest efficiency reported for any conductivity-reducing additive to date. The here-established approach, i.e., the use of a conjugated polymer as a mere additive, may boost demand in absolute terms beyond the quantities needed for thin-film electronics, which would turn organic semiconductors from a niche product into commodity chemicals.

9.
Adv Sci (Weinh) ; 8(2): 2002778, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33511014

RESUMEN

Polar polythiophenes with oligoethylene glycol side chains are exceedingly soft materials. A low glass transition temperature and low degree of crystallinity prevents their use as a bulk material. The synthesis of a copolymer comprising 1) soft polythiophene blocks with tetraethylene glycol side chains, and 2) hard urethane segments is reported. The molecular design is contrary to that of other semiconductor-insulator copolymers, which typically combine a soft nonconjugated spacer with hard conjugated segments. Copolymerization of polar polythiophenes and urethane segments results in a ductile material that can be used as a free-standing solid. The copolymer displays a storage modulus of 25 MPa at room temperature, elongation at break of 95%, and a reduced degree of swelling due to hydrogen bonding. Both chemical doping and electrochemical oxidation reveal that the introduction of urethane segments does not unduly reduce the hole charge-carrier mobility and ability to take up charge. Further, stable operation is observed when the copolymer is used as the active layer of organic electrochemical transistors.

10.
ACS Appl Bio Mater ; 4(4): 3133-3144, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35014401

RESUMEN

Developing flexible, stretchable, and thermally processable materials for packaging and stretchable electronic applications from polysaccharide-based polymers contributes to the smooth transition of the fossil-based economy to the circular bioeconomy. We present arabinoxylan (AX)-based thermoplastics obtained by ring-opening oxidation and subsequent reduction (dA-AX) combined with hydrophobization with three different glycidyl ethers [n-butyl (BuGE), isopropyl (iPrGE), and 2-ethyl hexyl (EtHGE) glycidyl ether]. We also investigate the relationship between structural composition, thermal processing, and thermomechanical properties. BuGE- and iPrGE-etherified dA-AXs showed glass-transition temperatures (Tg) far below their degradation temperatures and gave thermoplastic materials when compression-molded at 140 °C. The BuGE (3 mol)-etherified dA-AX films at 19 and 31% oxidation levels show 244% (±42) and 267% (±72) elongation, respectively. In contrast, iPrGE-dA-AX samples with shorter and branched terminals in the side chains had a maximum of 60% (±19) elongation. No studies have reported such superior elongation of AX thermoplastic films and its relationship with molar substitution and Tg. These findings have implications on the strategic development of chemical modification routes using commercial polymer processing technologies and on fine-tuning structures and properties when specific polysaccharide-based polymers are used to engineer bio-based products for film, packaging, and substrates for stretchable electronic applications.


Asunto(s)
Materiales Biocompatibles/química , Compuestos Epoxi/química , Temperatura , Xilanos/química , Ensayo de Materiales , Estructura Molecular , Oxidación-Reducción , Tamaño de la Partícula
11.
ACS Appl Mater Interfaces ; 12(50): 56403-56412, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33284024

RESUMEN

The emergence of "green" electronics is a response to the pressing global situation where conventional electronics contribute to resource depletion and a global build-up of waste. For wearable applications, green electronic textile (e-textile) materials present an opportunity to unobtrusively incorporate sensing, energy harvesting, and other functionality into the clothes we wear. Here, we demonstrate electrically conducting wood-based yarns produced by a roll-to-roll coating process with an ink based on the biocompatible polymer:polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). The developed e-textile yarns display a, for cellulose yarns, record-high bulk conductivity of 36 Scm-1, which could be further increased to 181 Scm-1 by adding silver nanowires. The PEDOT:PSS-coated yarn could be machine washed at least five times without loss in conductivity. We demonstrate the electrochemical functionality of the yarn through incorporation into organic electrochemical transistors (OECTs). Moreover, by using a household sewing machine, we have manufactured an out-of-plane thermoelectric textile device, which can produce 0.2 µW at a temperature gradient of 37 K.

12.
ACS Appl Mater Interfaces ; 12(24): 27537-27544, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32441502

RESUMEN

Electrically conducting fibers and yarns are critical components of future wearable electronic textile (e-textile) devices such as sensors, antennae, information processors, and energy harvesters. To achieve reliable wearable devices, the development of robust yarns with a high conductivity and excellent washability is urgently needed. In the present study, highly conductive and machine-washable silk yarns were developed utilizing a Ag nanowire and PEDOT:PSS composite coating. Ag nanowires were coated on the silk yarn via a dip-coating process followed by coating with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. The PEDOT:PSS covered the Ag nanowire layers while electrostatically binding to the silk, which significantly improved the robustness of the yarn as compared with the Ag nanowire-coated reference yarns. The fabricated conductive silk yarns had an excellent bulk conductivity of up to ∼320 S/cm, which is largely retained even after several cycles of machine washing. To demonstrate that these yarns can be incorporated into e-textiles, the conductive yarns were used to construct an all-textile out-of-plane thermoelectric device and a Joule heating element in a woven heating fabric.

13.
ACS Appl Mater Interfaces ; 12(7): 8713-8721, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32043356

RESUMEN

Because of their attractive mechanical properties, conducting polymers are widely perceived as materials of choice for wearable electronics and electronic textiles. However, most state-of-the-art conducting polymers contain harmful dopants and are only processable from solution but not in bulk, restricting the design possibilities for applications that require conducting micro-to-millimeter scale structures, such as textile fibers or thermoelectric modules. In this work, we present a strategy based on melt processing that enables the fabrication of nonhazardous, all-polymer conducting bulk structures composed of poly(3,4-ethylenedioxythiophene) (PEDOT) polymerized within a Nafion template. Importantly, we employ classical polymer processing techniques including melt extrusion followed by fiber spinning or fused filament 3D printing, which cannot be implemented with the majority of doped polymers. To demonstrate the versatility of our approach, we fabricated melt-spun PEDOT:Nafion fibers, which are highly flexible, retain their conductivity of about 3 S cm-1 upon stretching to 100% elongation, and can be used to construct organic electrochemical transistors (OECTs). Furthermore, we demonstrate the precise 3D printing of complex conducting structures from OECTs to centimeter-sized PEDOT:Nafion figurines and millimeter-thick 100-leg thermoelectric modules on textile substrates. Thus, our strategy opens up new possibilities for the design of conducting, all-polymer bulk structures and the development of wearable electronics and electronic textiles.

14.
Chem Mater ; 31(8): 2770-2777, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31303693

RESUMEN

Free-standing bulk structures encompassing highly doped conjugated polymers are currently heavily explored for wearable electronics as thermoelectric elements, conducting fibers, and a plethora of sensory devices. One-step manufacturing of such bulk structures is challenging because the interaction of dopants with conjugated polymers results in poor solution and solid-state processability, whereas doping of thick conjugated polymer structures after processing suffers from diffusion-limited transport of the dopant. Here, we introduce the concept of thermally activated latent dopants for in situ bulk doping of conjugated polymers. Latent dopants allow for noninteractive coprocessing of dopants and polymers, while thermal activation eliminates any thickness-dependent diffusion and activation limitations. Two latent acid dopants were synthesized in the form of thermal acid generators based on aryl sulfonic acids and an o-nitrobenzyl capping moiety. First, we show that these acid dopant precursors can be coprocessed noninteractively with three different polythiophenes. Second, the polymer films were doped in situ through thermal activation of the dopants. Ultimately, we demonstrate that solid-state processing with a latent acid dopant can be readily carried out and that it is possible to dope more than 100 µm-thick polymer films through thermal activation of the latent dopant.

15.
ACS Macro Lett ; 8(1): 70-76, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30701126

RESUMEN

The thermoelectric power factor of a broad range of organic semiconductors scales with their electrical conductivity according to a widely obeyed power law, and therefore, strategies that permit this empirical trend to be surpassed are highly sought after. Here, tensile drawing of the conjugated polymer poly(3-hexylthiophene) (P3HT) is employed to create free-standing films with a high degree of uniaxial alignment. Along the direction of orientation, sequential doping with a molybdenum tris(dithiolene) complex leads to a 5-fold enhancement of the power factor beyond the predicted value, reaching up to 16 µW m-1 K-2 for a conductivity of about 13 S cm-1. Neither stretching nor doping affect the glass transition temperature of P3HT, giving rise to robust free-standing materials that are of interest for the design of flexible thermoelectric devices.

16.
Adv Mater ; 31(22): e1807286, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30785223

RESUMEN

Organic semiconductors are the centerpiece of several vibrant research fields from single-molecule to organic electronics, and they are finding increasing use in bioelectronics and even classical polymer technology. The versatile chemistry and broad range of electronic functionalities of conjugated materials enable the bridging of length scales 15 orders of magnitude apart, ranging from a single nanometer (10-9 m) to the size of continents (106 m). This work provides a taste of the diverse applications that can be realized with organic semiconductors. The reader will embark on a journey from single molecular junctions to thin film organic electronics, supramolecular assemblies, biomaterials such as amyloid fibrils and nanofibrillated cellulose, conducting fibers and yarns for e-textiles, and finally to power cables that shuffle power across thousands of kilometers.

17.
ACS Appl Energy Mater ; 1(6): 2934-2941, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29963656

RESUMEN

Thermoelectric textiles that are able to generate electricity from heat gradients may find use as power sources for a wide range of miniature wearable electronics. To realize such thermoelectric textiles, both p- and n-type yarns are needed. The realization of air-stable and flexible n-type yarns, i.e., conducting yarns where electrons are the majority charge carriers, presents a considerable challenge due to the scarcity of air-stable n-doped organic materials. Here, we realize such n-type yarns by coating commercial sewing threads with a nanocomposite of multiwalled carbon nanotubes (MWNTs) and poly(N-vinylpyrrolidone) (PVP). Our n-type yarns have a bulk conductivity of 1 S cm-1 and a Seebeck coefficient of -14 µV K-1, which is stable for several months at ambient conditions. We combine our coated n-type yarns with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) dyed silk yarns, constituting the p-type component, to realize a textile thermoelectric module with 38 n/p elements, which are capable of producing an open-circuit voltage of 143 mV when exposed to a temperature gradient of 116 °C and a maximum power output of 7.1 nW at a temperature gradient of 80 °C.

18.
ACS Appl Mater Interfaces ; 9(10): 9045-9050, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28245105

RESUMEN

Durable, electrically conducting yarns are a critical component of electronic textiles (e-textiles). Here, such yarns with exceptional wear and wash resistance are realized through dyeing silk from the silkworm Bombyx mori with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. A high Young's modulus of approximately 2 GPa combined with a robust and scalable dyeing process results in up to 40 m long yarns that maintain their bulk electrical conductivity of approximately 14 S cm-1 when experiencing repeated bending stress as well as mechanical wear during sewing. Moreover, a high degree of ambient stability is paired with the ability to withstand both machine washing and dry cleaning. For the potential use for e-textile applications to be illustrated, an in-plane thermoelectric module that comprises 26 p-type legs is demonstrated by embroidery of dyed silk yarns onto a piece of felted wool fabric.

19.
RNA Biol ; 12(9): 985-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26176322

RESUMEN

Listeria monocytogenes is the causative agent of the foodborne disease listeriosis. During infection, L. monocytogenes produces an array of non-coding RNAs, including the multicopy sRNA LhrC. These five, nearly identical sRNAs are highly induced in response to cell envelope stress and target the virulence adhesin lapB at the post-transcriptional level. Here, we demonstrate that LhrC controls expression of additional genes encoding cell envelope-associated proteins with virulence function. Using transcriptomics and proteomics, we identified a set of genes affected by LhrC in response to cell envelope stress. Three targets were significantly down-regulated by LhrC at both the RNA and protein level: lmo2349, tcsA and oppA. All three genes encode membrane-associated proteins: A putative substrate binding protein of an amino acid ABC transporter (Lmo2349); the CD4+ T cell-stimulating antigen TcsA, and the oligopeptide binding protein OppA, of which the latter 2 are required for full virulence of L. monocytogenes. For OppA, we show that LhrC acts by direct base paring to the ribosome binding site of the oppA mRNA, leading to an impediment of its translation and a decreased mRNA level. The sRNA-mRNA interaction depends on 2 of 3 CU-rich regions in LhrC allowing binding of 2 oppA mRNAs to a single LhrC molecule. Finally, we found that LhrC contributes to infection in macrophage-like cells. These findings demonstrate a central role for LhrC in controlling the level of OppA and other virulence-associated cell envelope proteins in response to cell envelope stress.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Dosificación de Gen , Regulación Bacteriana de la Expresión Génica , Lipoproteínas/genética , Listeria monocytogenes/genética , ARN Pequeño no Traducido/genética , Animales , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Proteínas Portadoras/metabolismo , Perfilación de la Expresión Génica , Lipoproteínas/metabolismo , Listeria monocytogenes/metabolismo , Macrófagos/microbiología , Ratones , Mutación , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Operón , Proteoma , Proteómica/métodos , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo , Estrés Fisiológico/genética , Transcriptoma
20.
Nucleic Acids Res ; 42(14): 9383-98, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25034691

RESUMEN

The multicopy sRNA LhrC of the intracellular pathogen Listeria monocytogenes has been shown to be induced under infection-relevant conditions, but its physiological role and mechanism of action is not understood. In an attempt to pinpoint the exact terms of LhrC expression, cell envelope stress could be defined as a specific inducer of LhrC. In this process, the two-component system LisRK was shown to be indispensable for expression of all five copies of LhrC. lapB mRNA, encoding a cell wall associated protein that was recently identified as an important virulence factor, was disclosed to be directly bound by LhrC leading to an impediment of its translation. Although LhrC binds to Hfq, it does not require the RNA chaperone for stability or lapB mRNA interaction. The mechanism of LhrC-lapB mRNA binding was shown to involve three redundant CU-rich sites and a structural rearrangement in the sRNA. This study represents an extensive depiction of a so far uncharacterized multicopy sRNA and reveals interesting new aspects concerning its regulation, virulence association and mechanism of target binding.


Asunto(s)
Adhesinas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Listeria monocytogenes/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Adhesinas Bacterianas/metabolismo , Dosificación de Gen , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidad , ARN Bacteriano/genética , ARN Bacteriano/fisiología , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/fisiología , Estrés Fisiológico , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...