Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
IJID Reg ; 12: 100414, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39257853

RESUMEN

Objectives: Borrelia burgdorferi sensu lato (Bbsl) and tick-borne encephalitis virus (TBEV) are tick-borne pathogens. This study aimed to investigate the seroprevalence of these pathogens in Danish blood donors. Methods: A total of 1000 plasma samples equally distributed (n = 200) from all five Danish regions were analyzed. Commercially available enzyme-linked immunosorbent assays were used to screen the samples for immunoglobulin G antibodies against Bbsl and TBEV. The samples positive for antibodies against TBEV were further examined with a commercially available enzyme-linked immunosorbent assay and a Luminex-based TBEV suspension multiplex immunoassay for specific antibodies against non-structural protein 1 (NS1) antigen suggestive of previous infection. Results: A total of 62 samples tested positive for immunoglobulin G antibodies against Bbsl. A total of 40 samples were positive or borderline for antibodies against TBEV, indicating potential infection or vaccination. Of these, one had antibodies against NS1, indicating past infection. The seroprevalence of Bbsl was 6.2% (95% confidence interval 4.8-7.8), with equal seroprevalence in all five regions. The seroprevalence of TBEV was 0.1% (95% confidence interval 0.01-0.62%). Conclusions: The seroprevalence of Bbsl was similar throughout the country and corresponds well with previous studies. The seroprevalence of TBEV NS1 was low, which is in line with a low number of reported tick-borne encephalitis cases in Denmark. The NS1 positive sample was from the Capital Region, an endemic TBEV area.

2.
Antimicrob Agents Chemother ; 68(10): e0090924, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39194208

RESUMEN

In vitro screening of large compound libraries with automated high-throughput screening is expensive and time-consuming and requires dedicated infrastructures. Conversely, the selection of DNA-encoded chemical libraries (DECLs) can be rapidly performed with routine equipment available in most laboratories. In this study, we identified novel inhibitors of SARS-CoV-2 main protease (Mpro) through the affinity-based selection of the DELopen library (open access for academics), containing 4.2 billion compounds. The identified inhibitors were peptide-like compounds containing an N-terminal electrophilic group able to form a covalent bond with the nucleophilic Cys145 of Mpro, as confirmed by x-ray crystallography. This DECL selection campaign enabled the discovery of the unoptimized compound SLL11 (IC50 = 30 nM), proving that the rapid exploration of large chemical spaces enabled by DECL technology allows for the direct identification of potent inhibitors avoiding several rounds of iterative medicinal chemistry. As demonstrated further by x-ray crystallography, SLL11 was found to adopt a highly unique U-shaped binding conformation, which allows the N-terminal electrophilic group to loop back to the S1' subsite while the C-terminal amino acid sits in the S1 subsite. MP1, a close analog of SLL11, showed antiviral activity against SARS-CoV-2 in the low micromolar range when tested in Caco-2 and Calu-3 (EC50 = 2.3 µM) cell lines. As peptide-like compounds can suffer from low cell permeability and metabolic stability, the cyclization of the compounds will be explored in the future to improve their antiviral activity.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Humanos , Cristalografía por Rayos X , Antivirales/farmacología , Antivirales/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Tratamiento Farmacológico de COVID-19 , Células CACO-2
3.
PLoS Negl Trop Dis ; 18(7): e0012349, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39058744

RESUMEN

In 2018-2019, Thailand experienced a nationwide spread of chikungunya virus (CHIKV), with approximately 15,000 confirmed cases of disease reported. Here, we investigated the evolutionary and molecular history of the East/Central/South African (ECSA) genotype to determine the origins of the 2018-2019 CHIKV outbreak in Thailand. This was done using newly sequenced clinical samples from travellers returning to Sweden from Thailand in late 2018 and early 2019 and previously published genome sequences. Our phylogeographic analysis showed that before the outbreak in Thailand, the Indian Ocean lineage (IOL) found within the ESCA, had evolved and circulated in East Africa, South Asia, and Southeast Asia for about 15 years. In the first half of 2017, an introduction occurred into Thailand from another South Asian country, most likely Bangladesh, which subsequently developed into a large outbreak in Thailand with export to neighbouring countries. Based on comparative phylogenetic analyses of the complete CHIKV genome and protein modelling, we identified several mutations in the E1/E2 spike complex, such as E1 K211E and E2 V264A, which are highly relevant as they may lead to changes in vector competence, transmission efficiency and pathogenicity of the virus. A number of mutations (E2 G205S, Nsp3 D372E, Nsp2 V793A), that emerged shortly before the outbreak of the virus in Thailand in 2018 may have altered antibody binding and recognition due to their position. This study not only improves our understanding of the factors contributing to the epidemic in Southeast Asia, but also has implications for the development of effective response strategies and the potential development of new vaccines.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Brotes de Enfermedades , Evolución Molecular , Genotipo , Filogenia , Virus Chikungunya/genética , Virus Chikungunya/clasificación , Virus Chikungunya/aislamiento & purificación , Humanos , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/virología , Tailandia/epidemiología , Genoma Viral , Suecia/epidemiología , Filogeografía , Mutación , Proteínas del Envoltorio Viral/genética
4.
Sci Rep ; 14(1): 16573, 2024 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020003

RESUMEN

Arboviruses transmitted by mosquitoes, including Japanese encephalitis virus (JEV), present a substantial global health threat. JEV is transmitted by mosquitoes in the genus Culex, which are common in both urban and rural areas in Vietnam. In 2020, we conducted a 1-year survey of Culex mosquito abundance in urban, suburban, and peri-urban areas of Hanoi using CDC-light traps. Mosquitoes were identified to species and sorted into pools based on species, sex, and trap location. The mosquito pools were also investigated by RT-qPCR for detection of JEV. In total, 4829 mosquitoes were collected over a total of 455 trap-nights, across 13 months. Collected mosquitoes included Culex, Aedes, Anopheles, and Mansonia species. Culex mosquitoes, primarily Cx. quinquefasciatus, predominated, especially in peri-urban areas. Most Culex mosquitoes were caught in the early months of the year. The distribution and abundance of mosquitoes exhibited variations across urban, suburban, and peri-urban sites, emphasizing the influence of environmental factors such as degree of urbanization, temperature and humidity on Culex abundance. No JEV was detected in the mosquito pools. This study establishes baseline knowledge of Culex abundance and temporal variation, which is crucial for understanding the potential for JEV transmission in Hanoi.


Asunto(s)
Culex , Mosquitos Vectores , Animales , Vietnam , Culex/virología , Mosquitos Vectores/virología , Mosquitos Vectores/fisiología , Femenino , Análisis Espacio-Temporal , Masculino , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Virus de la Encefalitis Japonesa (Especie)/genética , Estaciones del Año
5.
Parasit Vectors ; 17(1): 220, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741172

RESUMEN

BACKGROUND: Japanese encephalitis virus (JEV) is an emerging mosquito-borne Orthoflavivirus that poses a significant public health risk in many temperate and tropical regions in Asia. Since the climate in some endemic countries is similar to temperate climates observed in Europe, understanding the role of specific mosquito species in the transmission of JEV is essential for predicting and effectively controlling the potential for the introduction and establishment of JEV in Europe. METHODS: This study aimed to investigate the vector competence of colonized Culex pipiens biotype molestus mosquitoes for JEV. The mosquitoes were initially collected from the field in southern Sweden. The mosquitoes were offered a blood meal containing the Nakayama strain of JEV (genotype III), and infection rates, dissemination rates, and transmission rates were evaluated at 14, 21, and 28 days post-feeding. RESULTS: The study revealed that colonized Swedish Cx. pipiens are susceptible to JEV infection, with a stable infection rate of around 10% at all timepoints. However, the virus was only detected in the legs of one mosquito at 21 days post-feeding, and no mosquito saliva contained JEV. CONCLUSIONS: Overall, this research shows that Swedish Cx. pipiens can become infected with JEV, and emphasizes the importance of further understanding of the thresholds and barriers for JEV dissemination in mosquitoes.


Asunto(s)
Culex , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Mosquitos Vectores , Animales , Femenino , Culex/virología , Culex/fisiología , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/transmisión , Encefalitis Japonesa/virología , Mosquitos Vectores/virología , Saliva/virología , Suecia
6.
Emerg Infect Dis ; 30(4): 732-737, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526134

RESUMEN

In 2018, a local case of nephropathia epidemica was reported in Scania, southern Sweden, more than 500 km south of the previously known presence of human hantavirus infections in Sweden. Another case emerged in the same area in 2020. To investigate the zoonotic origin of those cases, we trapped rodents in Ballingslöv, Norra Sandby, and Sörby in southern Sweden during 2020‒2021. We found Puumala virus (PUUV) in lung tissues from 9 of 74 Myodes glareolus bank voles by screening tissues using a hantavirus pan-large segment reverse transcription PCR. Genetic analysis revealed that the PUUV strains were distinct from those found in northern Sweden and Denmark and belonged to the Finnish PUUV lineage. Our findings suggest an introduction of PUUV from Finland or Karelia, causing the human PUUV infections in Scania. This discovery emphasizes the need to understand the evolution, cross-species transmission, and disease outcomes of this newly found PUUV variant.


Asunto(s)
Infecciones por Hantavirus , Fiebre Hemorrágica con Síndrome Renal , Virus Puumala , Animales , Humanos , Fiebre Hemorrágica con Síndrome Renal/epidemiología , Fiebre Hemorrágica con Síndrome Renal/veterinaria , Virus Puumala/genética , Suecia/epidemiología , Arvicolinae
7.
One Health ; 18: 100707, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38500563

RESUMEN

Usutu virus (USUV) is an emerging mosquito-borne flavivirus with increasing prevalence in Europe. Understanding the role of mosquito species in USUV transmission is crucial for predicting and controlling potential outbreaks. This study aimed to assess the vector competence of Swedish Culex pipiens for USUV. The mosquitoes were orally infected with an Italian strain of USUV (Bologna 2009) and infection rates (IR), dissemination rates (DR), and transmission rates (TR) were evaluated over 7 to 28 days post-infection. The study revealed that Swedish Cx. pipiens are susceptible to USUV infection, with a gradual decrease in IR over time. However, the percentage of mosquitoes with the ability to transmit the virus remained consistent across all time points, indicating a relatively short extrinsic incubation period. Overall, this research highlights the potential of Swedish Cx. pipiens as vectors for USUV and emphasizes the importance of surveillance and monitoring to prevent future outbreaks of mosquito-borne diseases.

8.
Euro Surveill ; 29(2)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38214080

RESUMEN

BackgroundIn Sweden, information on seroprevalence of tick-borne encephalitis virus (TBEV) in the population, including vaccination coverage and infection, is scattered. This is largely due to the absence of a national tick-borne encephalitis (TBE) vaccination registry, scarcity of previous serological studies and use of serological methods not distinguishing between antibodies induced by vaccination and infection. Furthermore, the number of notified TBE cases in Sweden has continued to increase in recent years despite increased vaccination.AimThe aim was to estimate the TBEV seroprevalence in Sweden.MethodsIn 2018 and 2019, 2,700 serum samples from blood donors in nine Swedish regions were analysed using a serological method that can distinguish antibodies induced by vaccination from antibodies elicited by infection. The regions were chosen to reflect differences in notified TBE incidence.ResultsThe overall seroprevalence varied from 9.7% (95% confidence interval (CI): 6.6-13.6%) to 64.0% (95% CI: 58.3-69.4%) between regions. The proportion of vaccinated individuals ranged from 8.7% (95% CI: 5.8-12.6) to 57.0% (95% CI: 51.2-62.6) and of infected from 1.0% (95% CI: 0.2-3.0) to 7.0% (95% CI: 4.5-10.7). Thus, more than 160,000 and 1,600,000 individuals could have been infected by TBEV and vaccinated against TBE, respectively. The mean manifestation index was 3.1%.ConclusionA difference was observed between low- and high-incidence TBE regions, on the overall TBEV seroprevalence and when separated into vaccinated and infected individuals. The estimated incidence and manifestation index argue that a large proportion of TBEV infections are not diagnosed.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Infecciones por Flavivirus , Humanos , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/prevención & control , Suecia/epidemiología , Cobertura de Vacunación , Estudios Seroepidemiológicos , Vacunación , Anticuerpos Antivirales
9.
Glycobiology ; 34(3)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38127648

RESUMEN

Influenza A virus (IAV) pandemics result from interspecies transmission events within the avian reservoir and further into mammals including humans. Receptor incompatibility due to differently expressed glycan structures between species has been suggested to limit zoonotic IAV transmission from the wild bird reservoir as well as between different bird species. Using glycoproteomics, we have studied the repertoires of expressed glycan structures with focus on putative sialic acid-containing glycan receptors for IAV in mallard, chicken and tufted duck; three bird species with different roles in the zoonotic ecology of IAV. The methodology used pinpoints specific glycan structures to specific glycosylation sites of identified glycoproteins and was also used to successfully discriminate α2-3- from α2-6-linked terminal sialic acids by careful analysis of oxonium ions released from glycopeptides in tandem MS/MS (MS2), and MS/MS/MS (MS3). Our analysis clearly demonstrated that all three bird species can produce complex N-glycans including α2-3-linked sialyl Lewis structures, as well as both N- and O- glycans terminated with both α2-3- and α2-6-linked Neu5Ac. We also found the recently identified putative IAV receptor structures, Man-6P N-glycopeptides, in all tissues of the three bird species. Furthermore, we found many similarities in the repertoires of expressed receptors both between the bird species investigated and to previously published data from pigs and humans. Our findings of sialylated glycan structures, previously anticipated to be mammalian specific, in all three bird species may have major implications for our understanding of the role of receptor incompatibility in interspecies transmission of IAV.


Asunto(s)
Virus de la Influenza A , Humanos , Animales , Porcinos , Virus de la Influenza A/metabolismo , Patos/metabolismo , Pollos/metabolismo , Espectrometría de Masas en Tándem , Glicopéptidos/metabolismo , Polisacáridos/metabolismo , Mamíferos/metabolismo
10.
iScience ; 26(12): 108441, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38144451

RESUMEN

Susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is highly variable and could be mediated by a cross-protective pre-immunity. We identified 14 cross-reactive peptides between SARS-CoV-2 and influenza A H1N1, H3N2, and human herpesvirus (HHV)-6A/B with potential relevance. The H1N1 peptide NGVEGF was identical to a peptide in the most critical receptor binding motif in SARS-CoV-2 spike protein that interacts with the angiotensin converting enzyme 2 receptor. About 62%-73% of COVID-19-negative blood donors in Stockholm had antibodies to this peptide in the early pre-vaccination phase of the pandemic. Seasonal flu vaccination enhanced neutralizing capacity to SARS-CoV-2 and T cell immunity to this peptide. Mathematical modeling taking the estimated pre-immunity levels to flu into account could fully predict pre-Omicron SARS-CoV-2 outbreaks in Stockholm and India. This cross-immunity provides mechanistic explanations to the epidemiological observation that influenza vaccination protected people against early SARS-CoV-2 infections and implies that flu-mediated cross-protective immunity significantly dampened the first SARS-CoV-2 outbreaks.

11.
Infect Ecol Epidemiol ; 13(1): 2270258, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37867606

RESUMEN

The alpine ecosystems and communities of central Asia are currently undergoing large-scale ecological and socio-ecological changes likely to affect wildlife-livestock-human disease interactions and zoonosis transmission risk. However, relatively little is known about the prevalence of pathogens in this region. Between 2012 and 2015 we screened 142 rodents in Mongolia's Gobi desert for exposure to important zoonotic and livestock pathogens. Rodent seroprevalence to Leptospira spp. was >1/3 of tested animals, Toxoplasma gondii and Coxiella burnetii approximately 1/8 animals, and the hantaviruses being between 1/20 (Puumala-like hantavirus) and <1/100 (Seoul-like hantavirus). Gerbils trapped inside local dwellings were one of the species seropositive to Puumala-like hantavirus, suggesting a potential zoonotic transmission pathway. Seventeen genera of zoonotic bacteria were also detected in the faeces and ticks collected from these rodents, with one tick testing positive to Yersinia. Our study helps provide baseline patterns of disease prevalence needed to infer potential transmission between source and target populations in this region, and to help shift the focus of epidemiological research towards understanding disease transmission among species and proactive disease mitigation strategies within a broader One Health framework.

12.
J Gen Virol ; 104(10)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37801017

RESUMEN

Identification of B-cell epitopes facilitates the development of vaccines, therapeutic antibodies and diagnostic tools. Previously, the binding site of the bank vole monoclonal antibody (mAb) 4G2 against Puumala virus (PUUV, an orthohantavirus in the Hantaviridae family of the Bunyavirales order) was predicted using a combination of methods, including pepscan, phage-display, and site-directed mutagenesis of vesicular stomatitis virus (VSV) particles pseudotyped with Gn and Gc glycoproteins from PUUV. These techniques led to the identification of the neutralization escape mutation F915A. To our surprise, a recent crystal structure of PUUV Gc in complex with Fab 4G2 revealed that residue F915 is distal from epitope of mAb 4G2. To clarify this issue and explore potential explanations for the inconsistency, we designed a mutagenesis experiment to probe the 4G2 epitope, with three PUUV pseudoviruses carrying amino acid changes E725A, S944F, and S946F, located within the structure-based 4G2 epitope on the Gc. These amino acid changes were able to convey neutralization escape from 4G2, and S944F and S946F also conveyed escape from neutralization by human mAb 1C9. Furthermore, our mapping of all the known neutralization evasion sites from hantaviral Gcs onto PUUV Gc revealed that over 60 % of these sites reside within or close to the epitope of mAb 4G2, indicating that this region may represent a crucial area targeted by neutralizing antibodies against PUUV, and to a lesser extent, other hantaviruses. The identification of this site of vulnerability could guide the creation of subunit vaccines against PUUV and other hantaviruses in the future.


Asunto(s)
Orthohantavirus , Virus Puumala , Humanos , Virus Puumala/genética , Virus Puumala/química , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Epítopos de Linfocito B , Aminoácidos , Anticuerpos Antivirales , Pruebas de Neutralización
13.
Acta Oncol ; 62(12): 1707-1715, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37729083

RESUMEN

BACKGROUND: Swedish recommendations to reduce the risk of COVID-19 relied on each citizen's own sense of responsibility rather than mandatory lockdowns. We studied how COVID-19-related self-isolation and anxiety correlated to SARS-CoV-2 seropositivity and PCR-positivity in patients with active cancer treatment. METHODS: In a longitudinal cohort study at Uppsala University Hospital patients and cancer personnel were included between April 1st 2020 to August 1st 2020. Serological testing for SARS-CoV-2 was done every 8-12-weeks until 30 March 2021. Patients completed a survey at inclusion regarding self-reported COVID-19-related anxiety and self-isolation. RESULTS: A total of 622 patients [n = 475 with solid malignancies (SM), n = 147 with haematological malignancies (HM)], and 358 healthcare personnel were included. The seropositivity rate was lower for patients than for personnel; 10.5% for SM patients, 6.8% for HM patients, and 16.2% for personnel (p = 0.005). Strict adherence to self-isolation guidelines was reported by 54% of patients but was not associated with a lower risk of becoming seropositive [OR = 1.4 (0.8-2.5), p = 0.2]. High anxiety was expressed by 32% of patients, more often by SM patients than HM patients (34% vs 25% [OR = 1.6 (1.1-2.5, p = 0.03)]). Female gender [OR = 3.5 (2.4-5.2), p < 0.001] and being born outside of Europe [OR = 2.9 (1.4-6.4), p = 0.007] were both associated with high anxiety. Patients reporting high anxiety became seropositive to a similar degree as those with low anxiety [OR = 0.7 (0.3-1.2), p = 0.2]. HM patients with PCR-positive COVID-19 were more likely than SM patients to require oxygen therapy, including non-invasive ventilation/intubation (69% vs. 26%, p = 0.005). CONCLUSION: For Swedish patients on active cancer treatment, high self-assessed COVID-19-related anxiety or strict adherence to self-isolation guidelines were not associated with a lower risk of COVID-19. Patients with HM were less likely to develop serological antibody response after COVID-19 and were more likely to require advanced hospital care, but expressed less COVID-19-related anxiety than patients with SM.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Femenino , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Suecia/epidemiología , Estudios Longitudinales , Control de Enfermedades Transmisibles , Neoplasias/epidemiología , Neoplasias/terapia
14.
Antibiotics (Basel) ; 12(9)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37760745

RESUMEN

The consumption of milk contaminated with antibiotic-resistant bacteria poses a significant health threat to humans. This study aimed to investigate the prevalence of Enterobacteriaceae producing ß-lactamases (ESBL, MBL, and AmpC) in cow and buffalo milk samples from two Indian states, Haryana and Assam. A total of 401 milk samples were collected from dairy farmers and vendors in the specified districts. Microbiological assays, antibiotic susceptibility testing, and PCR-based genotyping were employed to analyze 421 Gram-negative bacterial isolates. The overall prevalence of ß-lactamase genes was 10% (confidence interval (CI) (7-13)), with higher rates in Haryana (13%, CI (9-19)) compared to Assam (7%, CI (4-11)). The identified ß-lactamase genes in isolates were blaCMY, blaMOX, blaFOX, blaEBC, and blaDHA, associated with AmpC production. Additionally, blaCTX-M1, blaSHV, and blaTEM were detected as ESBL producers, while blaVIM, blaIMP, blaSPM, blaSIM, and blaGIM were identified as MBL producers. Notably, Shigella spp. were the dominant ß-lactamase producers among identified Enterobacteriaceae. This study highlights the presence of various prevalent ß-lactamase genes in milk isolates, indicating the potential risk of antimicrobial-resistant bacteria in dairy products. The presence of ß-lactam resistance raises concern as this could restrict antibiotic options for treatment. The discordance between genotypic and phenotypic methods emphasizes the necessity for comprehensive approaches that integrate both techniques to accurately assess antibiotic resistance. Urgent collaborative action incorporating rational and regulated use of antibiotics across the dairy value chain is required to address the global challenge of ß-lactam resistance.

15.
Microorganisms ; 11(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37630551

RESUMEN

We compiled data on notified cases of leptospirosis in animals and humans in Sweden. Published studies on leptospirosis in humans and animals from the beginning of the 20th century onwards are summarized. During the Second World War, hundreds of leptospirosis cases in humans were reported in Sweden, but since then, there have been only a few severe cases. Surveillance of leptospirosis in domestic animals demonstrates that the pathogen is still occurring. The occurrence of Leptospira in humans and animals in the other Nordic countries resembles that in Sweden. Leptospirosis is an underdiagnosed and underreported disease globally, both in animals and humans, partly due to the lack of simple, rapid diagnostic tools but possibly also due to the lack of awareness among physicians, veterinarians and nurses. Traditionally, leptospirosis has been mostly diagnosed by serology, but development of molecular methodshas improved the capability for correct diagnosis. As of today, leptospirosis is regarded as a relatively uncommon disease in the Nordic countries, but in some other countries, it is considered a neglected zoonosis or a (re-)emerging disease that may become more common in the future. Possible factors that could contribute to an increase in incidence are discussed in this review. Active surveillance of humans and domestic and wild animals and stringent rodent control in society and animal farms are of outmost importance for prevention.

16.
Viruses ; 15(6)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37376580

RESUMEN

The current gold standard assay for detecting neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the conventional virus neutralization test (cVNT), which requires infectious virus and a biosafety level 3 laboratory. Here, we report the development of a SARS-CoV-2 surrogate virus neutralization test (sVNT) that, with Luminex technology, detects NAbs. The assay was designed to mimic the virus-host interaction and is based on antibody blockage between the human angiotensin-converting enzyme 2 (hACE2) receptor and the spike (S) protein of the Wuhan, Delta, and Omicron (B.1.1.529) variants of SARS-CoV-2. The sVNT proved to have a 100% correlation with a SARS-CoV-2 cVNT regarding qualitative results. Binding between the hACE2 receptor and the S1 domain of the B.1.1.529 lineage of the Omicron variant was not observed in the assay but between the receptor and an S1 + S2 trimer and the receptor binding domain (RBD) in a reduced manner, suggesting less efficient receptor binding for the B.1.1.529 Omicron variant. The results indicate that the SARS-CoV-2 sVNT is a suitable tool for both the research community and the public health service, as it may serve as an efficient diagnostic alternative to the cVNT.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Pruebas de Neutralización , SARS-CoV-2/genética , COVID-19/diagnóstico , Anticuerpos Neutralizantes , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales
17.
Microbiol Spectr ; 11(4): e0258622, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37358408

RESUMEN

Cross-species transmission of influenza A virus (IAV) from wild waterfowl to poultry is the first step in a chain of events that can ultimately lead to exposure and infection of humans. Herein, we study the outcome of infection with eight different mallard-origin IAV subtypes in two different avian hosts: tufted ducks and chickens. We found that infection and shedding patterns as well as innate immune responses were highly dependent on viral subtypes, host species, and inoculation routes. For example, intraoesophageal inoculation, commonly used in mallard infection experiments, resulted in no infections in contrast to oculonasal inoculation, suggesting a difference in transmission routes. Despite H9N2 being endemic in chickens, inoculation of mallard-origin H9N2 failed to cause viable infection beyond 1 day postinfection in our study design. The innate immune responses were markedly different in chickens and tufted ducks, and despite the presence of retinoic acid-inducible gene-I (RIG-I) in tufted duck transcriptomes, it was neither up nor downregulated in response to infection. Overall, we have revealed the heterogeneity of infection patterns and responses in two markedly different avian hosts following a challenge with mallard-origin IAV. These virus-host interactions provide new insights into important aspects of interspecies transmission of IAV. IMPORTANCE Our current findings highlight important aspects of IAV infection in birds that have implications for our understanding of its zoonotic ecology. In contrast to mallards where the intestinal tract is the main site of IAV replication, chickens and tufted ducks show limited or no signs of intestinal infection suggesting that the fecal-oral transmission route might not apply to all bird IAV host species. Our results indicate that mallard-origin IAVs undergo genetic changes upon introduction into new hosts, suggesting rapid adaptation to a new environment. However, similar to the mallard, chickens and tufted ducks show a limited immune response to infection with low pathogenic avian influenza viruses. These findings and future studies in different IAV hosts are important for our understanding of barriers to IAV transmission between species and ultimately from the wild reservoir to humans.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Humanos , Animales , Patos , Pollos , Inmunidad Innata
18.
J Gen Virol ; 104(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37018118

RESUMEN

The neuraminidase inhibitor (NAI) oseltamivir is stockpiled globally as part of influenza pandemic preparedness. However, oseltamivir carboxylate (OC) resistance develops in avian influenza virus (AIV) infecting mallards exposed to environmental-like OC concentrations, suggesting that environmental resistance is a real concern. Herein we used an in vivo model to investigate if avian influenza H1N1 with the OC-resistant mutation NA-H274Y (51833/H274Y) as compared to the wild-type (wt) strain (51833 /wt) could transmit from mallards, which would potentially be exposed to environmentally contaminated environments, to and between chickens, thus posing a potential zoonotic risk of antiviral-resistant AIV. Regardless of whether the virus had the OC-resistant mutation or not, chickens became infected both through experimental infection, and following exposure to infected mallards. We found similar infection patterns between 51833/wt and 51833/H274Y such that, one chicken inoculated with 51833/wt and three chickens inoculated with 51833/H274Y were AIV positive in oropharyngeal samples more than 2 days consecutively, indicating true infection, and one contact chicken exposed to infected mallards was AIV positive in faecal samples for 3 consecutive days (51833/wt) and another contact chicken for 4 consecutive days (51833/H274Y). Importantly, all positive samples from chickens infected with 51833/H274Y retained the NA-H274Y mutation. However, none of the virus strains established sustained transmission in chickens, likely due to insufficient adaptation to the chicken host. Our results demonstrate that an OC-resistant avian influenza virus can transmit from mallards and replicate in chickens. NA-H274Y does not constitute a barrier to interspecies transmission per se, as the resistant virus did not show reduced replicative capacity compared to the wild-type counterpart. Thus, responsible use of oseltamivir and surveillance for resistance development is warranted to limit the risk of an OC-resistant pandemic strain.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Humanos , Animales , Oseltamivir/farmacología , Pollos , Subtipo H1N1 del Virus de la Influenza A/genética , Antivirales/farmacología , Virus de la Influenza A/genética , Patos , Neuraminidasa/genética , Farmacorresistencia Viral , Gripe Humana/tratamiento farmacológico
19.
Sci Rep ; 13(1): 4476, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934147

RESUMEN

Exchange of viral segments between one or more influenza virus subtypes can contribute to a shift in virulence and adaptation to new hosts. Among several influenza subtypes, H9N2 is widely circulating in poultry populations worldwide and has the ability to infect humans. Here, we studied the reassortant compatibility between chicken H9N2 with N1-N9 gene segments of wild bird origin, either with an intact or truncated stalk. Naturally occurring amino acid deletions in the NA stalk of the influenza virus can lead to increased virulence in both mallard ducks and chickens. Our findings show extended genetic compatibility between chicken H9Nx gene segments and the wild-bird NA with and without 20 amino acid stalk deletion. Replication kinetics in avian, mammalian and human cell lines revealed that parental chH9N2 and rH9N6 viruses with intact NA-stalk replicated significantly better in avian DF1 cells compared to human A549 cells. After introducing a stalk deletion, an enhanced preference for replication in mammalian and human cell lines could be observed for rH9N2Δ(H6), rH9N6Δ and rH9N9Δ compared to the parental chH9N2 virus. This highlights the potential emergence of novel viruses with variable phenotypic traits, warranting the continuous monitoring of H9N2 and co-circulating subtypes in avian hosts.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Aves de Corral , Pollos , Neuraminidasa/genética , Neuraminidasa/metabolismo , Animales Salvajes , Aminoácidos/metabolismo , Filogenia , Mamíferos
20.
Pathogens ; 12(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36839616

RESUMEN

Bovine milk and milk products may contain pathogens, antimicrobial resistant bacteria, and antibiotic residues that could harm consumers. We analyzed 282 gram-positive isolates from milk samples from dairy farmers and vendors in Haryana and Assam, India, to assess the prevalence of methicillin-resistant staphylococci using microbiological tests, antibiotic susceptibility testing, and genotyping by PCR. The prevalence of genotypic methicillin resistance in isolates from raw milk samples was 5% [95% confidence interval, CI (3-8)], with 7% [CI (3-10)] in Haryana, in contrast to 2% [CI (0.2-6)] in Assam. The prevalence was the same in isolates from milk samples collected from farmers [5% (n = 6), CI (2-11)] and vendors [5% (n = 7), CI (2-10)]. Methicillin resistance was also observed in 15% of the isolates from pasteurized milk [(n = 3), CI (3-38)]. Two staphylococci harboring a novel mecC gene were identified for the first time in Indian dairy products. The only SCCmec type identified was Type V. The staphylococci with the mecA (n = 11) gene in raw milk were commonly resistant to oxacillin [92%, CI (59-100)] and cefoxitin [74%, CI (39-94)], while the isolates with mecC (n = 2) were resistant to oxacillin (100%) only. All the staphylococci with the mecA (n = 3) gene in pasteurized milk were resistant to both oxacillin and cefoxitin. Our results provided evidence that methicillin-resistant staphylococci occur in dairy products in India with potential public health implications. The state with more intensive dairy systems (Haryana) had higher levels of methicillin-resistant bacteria in milk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...