Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(10): e2214035120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36848574

RESUMEN

Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Regiones Antárticas , Efectos Antropogénicos , Océano Índico
2.
Adv Mar Biol ; 72: 17-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26555621

RESUMEN

Humpback dolphins (genus Sousa) use shallow, near-shore waters throughout their range. This coastal distribution makes them vulnerable to recreational and commercial disturbances, especially near heavily populated and industrialized areas. Most research focusing on Sousa and human activities has emphasized direct impacts and threats, involving injury and death, with relatively little focus on indirect effects on dolphins, such as changes in behaviour that may lead to deleterious effects. Understanding behaviour is important in resolving human-wildlife conflict and is an important component of conservation. This chapter gives an overview of animal behavioural responses to human activity with examples from diverse taxa; reviews the scientific literature on behavioural responses of humpback dolphins to human activity throughout their range, including marine vessel traffic, dolphin tourism, cetacean-fishery interactions, noise pollution, and habitat alteration; and highlights information and data gaps for future humpback dolphin research to better inform behaviour-based management decisions that contribute to conservation efforts.


Asunto(s)
Conducta Animal/fisiología , Delfines/fisiología , Actividades Humanas , Animales , Conservación de los Recursos Naturales , Ecosistema , Especies en Peligro de Extinción , Explotaciones Pesqueras , Ruido , Navíos , Contaminantes del Agua
3.
PLoS One ; 7(7): e41969, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844536

RESUMEN

BACKGROUND: Commercial viewing and swimming with dusky dolphins (Lagenorhynchus obscurus) near Kaikoura, New Zealand began in the late 1980s and researchers have previously described changes in vocalisation, aerial behaviour, and group spacing in the presence of vessels. This study was conducted to assess the current effects that tourism has on the activity budget of dusky dolphins to provide wildlife managers with information for current decision-making and facilitate development of quantitative criteria for management of this industry in the future. METHODOLOGY/PRINCIPAL FINDINGS: First-order time discrete Markov chain models were used to assess changes in the behavioural state of dusky dolphin pods targeted by tour vessels. Log-linear analysis was conducted on behavioural state transitions to determine whether the likelihood of dolphins moving from one behavioural state to another changed based on natural and anthropogenic factors. The best-fitting model determined by Akaike Information Criteria values included season, time of day, and vessel presence within 300 m. Interactions with vessels reduced the proportion of time dolphins spent resting in spring and summer and increased time spent milling in all seasons except autumn. Dolphins spent more time socialising in spring and summer, when conception occurs and calves are born, and the proportion of time spent resting was highest in summer. Resting decreased and traveling increased in the afternoon. CONCLUSIONS/SIGNIFICANCE: Responses to tour vessel traffic are similar to those described for dusky dolphins elsewhere. Disturbance linked to vessels may interrupt social interactions, carry energetic costs, or otherwise affect individual fitness. Research is needed to determine if increased milling is a result of acoustic masking of communication due to vessel noise, and to establish levels at which changes to behavioural budgets of dusky dolphins are likely to cause long-term harm. Threshold values from these studies would allow managers to set appropriate operational conditions based on quantifiable criteria.


Asunto(s)
Conducta Animal , Delfines/fisiología , Recreación , Navíos , Acústica , Animales , Toma de Decisiones , Industrias , Cadenas de Markov , Nueva Zelanda , Estaciones del Año , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA