Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 166(4): 1912-27, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25332507

RESUMEN

Reduced plant height and culm robustness are quantitative characteristics important for assuring cereal crop yield and quality under adverse weather conditions. A very limited number of short-culm mutant alleles were introduced into commercial crop cultivars during the Green Revolution. We identified phenotypic traits, including sturdy culm, specific for deficiencies in brassinosteroid biosynthesis and signaling in semidwarf mutants of barley (Hordeum vulgare). This set of characteristic traits was explored to perform a phenotypic screen of near-isogenic short-culm mutant lines from the brachytic, breviaristatum, dense spike, erectoides, semibrachytic, semidwarf, and slender dwarf mutant groups. In silico mapping of brassinosteroid-related genes in the barley genome in combination with sequencing of barley mutant lines assigned more than 20 historic mutants to three brassinosteroid-biosynthesis genes (BRASSINOSTEROID-6-OXIDASE, CONSTITUTIVE PHOTOMORPHOGENIC DWARF, and DIMINUTO) and one brassinosteroid-signaling gene (BRASSINOSTEROID-INSENSITIVE1 [HvBRI1]). Analyses of F2 and M2 populations, allelic crosses, and modeling of nonsynonymous amino acid exchanges in protein crystal structures gave a further understanding of the control of barley plant architecture and sturdiness by brassinosteroid-related genes. Alternatives to the widely used but highly temperature-sensitive uzu1.a allele of HvBRI1 represent potential genetic building blocks for breeding strategies with sturdy and climate-tolerant barley cultivars.


Asunto(s)
Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Alelos , Aminoácidos , Secuencia de Bases , Mapeo Cromosómico , Simulación por Computador , Grano Comestible , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Modelos Estructurales , Datos de Secuencia Molecular , Mutación , Fenotipo , Análisis de Secuencia de ADN , Transducción de Señal , Temperatura , Tiempo (Meteorología)
2.
J Biol Chem ; 288(33): 24012-9, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23836887

RESUMEN

The ATP-dependent insertion of Mg(2+) into protoporphyrin IX is the first committed step in the chlorophyll biosynthetic pathway. The reaction is catalyzed by magnesium chelatase, which consists of three gene products: BchI, BchD, and BchH. The BchI and BchD subunits belong to the family of AAA+ proteins (ATPases associated with various cellular activities) and form a two-ring complex with six BchI subunits in one layer and six BchD subunits in the other layer. This BchID complex is a two-layered trimer of dimers with the ATP binding site located at the interface between two neighboring BchI subunits. ATP hydrolysis by the BchID motor unit fuels the insertion of Mg(2+) into the porphyrin by the BchH subunit. In the present study, we explored mutations that were originally identified in semidominant barley (Hordeum vulgare L.) mutants. The resulting recombinant BchI proteins have marginal ATPase activity and cannot contribute to magnesium chelatase activity although they apparently form structurally correct complexes with BchD. Mixing experiments with modified and wild-type BchI in various combinations showed that an exchange of BchI subunits in magnesium chelatase occurs during the catalytic cycle, which indicates that dissociation of the complex may be part of the reaction mechanism related to product release. Mixing experiments also showed that more than three functional interfaces in the BchI ring structure are required for magnesium chelatase activity.


Asunto(s)
Biocatálisis , Hordeum/enzimología , Liasas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Subunidades de Proteína/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Clorofila/metabolismo , Liasas/química , Liasas/ultraestructura , Mutación/genética , Multimerización de Proteína , Subunidades de Proteína/química , Espectrofotometría
3.
Proc Natl Acad Sci U S A ; 109(11): 4326-31, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371569

RESUMEN

Time to flowering has an important impact on yield and has been a key trait in the domestication of crop plants and the spread of agriculture. In 1961, the cultivar Mari (mat-a.8) was the very first induced early barley (Hordeum vulgare L.) mutant to be released into commercial production. Mari extended the range of two-row spring barley cultivation as a result of its photoperiod insensitivity. Since its release, Mari or its derivatives have been used extensively across the world to facilitate short-season adaptation and further geographic range extension. By exploiting an extended historical collection of early-flowering mutants of barley, we identified Praematurum-a (Mat-a), the gene responsible for this key adaptive phenotype, as a homolog of the Arabidopsis thaliana circadian clock regulator Early Flowering 3 (Elf3). We characterized 87 induced mat-a mutant lines and identified >20 different mat-a alleles that had clear mutations leading to a defective putative ELF3 protein. Expression analysis of HvElf3 and Gigantea in mutant and wild-type plants demonstrated that mat-a mutations disturb the flowering pathway, leading to the early phenotype. Alleles of Mat-a therefore have important and demonstrated breeding value in barley but probably also in many other day-length-sensitive crop plants, where they may tune adaptation to different geographic regions and climatic conditions, a critical issue in times of global warming.


Asunto(s)
Adaptación Fisiológica/genética , Relojes Circadianos/genética , Genes de Plantas/genética , Hordeum/crecimiento & desarrollo , Hordeum/genética , Mutación/genética , Estaciones del Año , Agricultura , ADN de Plantas/genética , Flores/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estudios de Asociación Genética , Ligamiento Genético , Hordeum/fisiología , Datos de Secuencia Molecular , Fenotipo , Mapeo Físico de Cromosoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN , Sintenía/genética
4.
Biochemistry ; 50(18): 3713-23, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21456578

RESUMEN

Thioredoxin and thioredoxin reductase can regulate cell metabolism through redox regulation of disulfide bridges or through removal of H(2)O(2). These two enzymatic functions are combined in NADPH-dependent thioredoxin reductase C (NTRC), which contains an N-terminal thioredoxin reductase domain fused with a C-terminal thioredoxin domain. Rice NTRC exists in different oligomeric states, depending on the absence or presence of its NADPH cofactor. It has been suggested that the different oligomeric states may have diverse activity. Thus, the redox status of the chloroplast could influence the oligomeric state of NTRC and thereby its activity. We have characterized the oligomeric states of NTRC from barley (Hordeum vulgare L.). This also includes a structural model of the tetrameric NTRC derived from cryo-electron microscopy and single-particle reconstruction. We conclude that the tetrameric NTRC is a dimeric arrangement of two NTRC homodimers. Unlike that of rice NTRC, the quaternary structure of barley NTRC complexes is unaffected by addition of NADPH. The activity of NTRC was tested with two different enzyme assays. The N-terminal part of NTRC was tested in a thioredoxin reductase assay. A peroxide sensitive Mg-protoporphyrin IX monomethyl ester (MPE) cyclase enzyme system of the chlorophyll biosynthetic pathway was used to test the catalytic ability of both the N- and C-terminal parts of NTRC. The different oligomeric assembly states do not exhibit significantly different activities. Thus, it appears that the activities are independent of the oligomeric state of barley NTRC.


Asunto(s)
Hordeum/enzimología , NADP/química , Reductasa de Tiorredoxina-Disulfuro/química , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X/métodos , Dimerización , Magnesio/química , Conformación Molecular , Datos de Secuencia Molecular , Oxidación-Reducción , Peróxidos/química , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Tiorredoxinas/química
5.
Structure ; 18(3): 354-65, 2010 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-20223218

RESUMEN

Mg-chelatase catalyzes the first committed step of the chlorophyll biosynthetic pathway, the ATP-dependent insertion of Mg(2+) into protoporphyrin IX (PPIX). Here we report the reconstruction using single-particle cryo-electron microscopy of the complex between subunits BchD and BchI of Rhodobacter capsulatus Mg-chelatase in the presence of ADP, the nonhydrolyzable ATP analog AMPPNP, and ATP at 7.5 A, 14 A, and 13 A resolution, respectively. We show that the two AAA+ modules of the subunits form a unique complex of 3 dimers related by a three-fold axis. The reconstructions demonstrate substantial differences between the conformations of the complex in the presence of ATP and ADP, and suggest that the C-terminal integrin-I domains of the BchD subunits play a central role in transmitting conformational changes of BchI to BchD. Based on these data a model for the function of magnesium chelatase is proposed.


Asunto(s)
Adenosina Trifosfato/química , Proteínas Bacterianas/química , Liasas/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Genes Bacterianos , Liasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Rhodobacter capsulatus/metabolismo
6.
J Struct Biol ; 167(3): 227-34, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19545636

RESUMEN

Cobalamins belong to the tetrapyrrole family of prosthetic groups. The presence of a metal ion is a key feature of these compounds. In the oxygen-dependent (aerobic) cobalamin biosynthetic pathway, cobalt is inserted into a ring-contracted tetrapyrrole called hydrogenobyrinic acid a,c-diamide (HBAD) by a cobaltochelatase that is constituted by three subunits, CobN, CobS and CobT, with molecular masses of 137, 37 and 71kDa, respectively. Based on the similarities with magnesium chelatase, cobaltochelatase has been suggested to belong to the AAA(+) superfamily of proteins. In this paper we present the cloning of the Brucella melitensis cobN, cobS and cobT, the purification of the encoded protein products, and a single-particle reconstruction of the macromolecular assembly formed between CobS and CobT from negatively stained electron microscopy images of the complex. The results show for the first time that subunits CobS and CobT form a chaperone-like complex, characteristic for the AAA(+) class of proteins. The molecules are arranged in a two-tiered ring structure with the six subunits in each ring organized as a trimer of dimers. The similarity between this structure and that of magnesium chelatase, as well as analysis of the amino acid sequences confirms the suggested evolutionary relationship between the two enzymes.


Asunto(s)
Proteínas Bacterianas/química , Brucella melitensis/enzimología , Liasas/química , Chaperonas Moleculares/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Clonación Molecular , Liasas/genética , Microscopía Electrónica/métodos , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
7.
J Biol Chem ; 283(17): 11652-60, 2008 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-18263581

RESUMEN

Photosynthetic organisms require chlorophyll and bacteriochlorophyll to harness light energy and to transform water and carbon dioxide into carbohydrates and oxygen. The biosynthesis of these pigments is initiated by magnesium chelatase, an enzyme composed of BchI, BchD, and BchH proteins, which catalyzes the insertion of Mg(2+) into protoporphyrin IX (Proto) to produce Mg-protoporphyrin IX. BchI and BchD form an ATP-dependent AAA(+) complex that transiently interacts with the Proto-binding BchH subunit, at which point Mg(2+) is chelated. In this study, controlled proteolysis, electron microscopy of negatively stained specimens, and single-particle three-dimensional reconstruction have been used to probe the structure and substrate-binding mechanism of the BchH subunit to a resolution of 25A(.) The apo structure contains three major lobe-shaped domains connected at a single point with additional densities at the tip of two lobes termed the "thumb" and "finger." With the independent reconstruction of a substrate-bound BchH complex (BchH.Proto), we observed a distinct conformational change in the thumb and finger subdomains. Prolonged proteolysis of native apo-BchH produced a stable C-terminal fragment of 45 kDa, and Proto was shown to protect the full-length polypeptide from degradation. Fitting of a truncated BchH polypeptide reconstruction identified the N- and C-terminal domains. Our results show that the N- and C-terminal domains play crucial roles in the substrate-binding mechanism.


Asunto(s)
Proteínas Bacterianas/química , Clorofila/química , Liasas/química , Liasas/metabolismo , Microscopía Electrónica , Modelos Moleculares , Conformación Molecular , Níquel/química , Fotosíntesis , Porfirinas/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Protoporfirinas/química , Rhodobacter capsulatus/metabolismo , Especificidad por Sustrato
8.
J Mol Biol ; 375(4): 934-47, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18068723

RESUMEN

The generation of ab initio three-dimensional (3D) models is a bottleneck in the studies of large macromolecular assemblies by single-particle cryo-electron microscopy. We describe here a novel method, in which established methods for two-dimensional image processing are combined with newly developed programs for joint rotational 3D alignment of a large number of class averages (RAD) and calculation of 3D volumes from aligned projections (VolRec). We demonstrate the power of the method by reconstructing an approximately 660-kDa ATP-fueled AAA+ motor to 7.5 A resolution, with secondary structure elements identified throughout the structure. We propose the method as a generally applicable automated strategy to obtain 3D reconstructions from unstained single particles imaged in vitreous ice.


Asunto(s)
Adenosina Trifosfato/química , Microscopía por Crioelectrón/métodos , Dineínas/química , Adenosina Difosfato/metabolismo , Algoritmos , Secuencia de Aminoácidos , Simulación por Computador , Dimerización , Dineínas/metabolismo , Dineínas/ultraestructura , Análisis de Fourier , Liasas/química , Liasas/genética , Liasas/ultraestructura , Datos de Secuencia Molecular , Peso Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/ultraestructura , Reproducibilidad de los Resultados , Rhodobacter capsulatus/enzimología , Homología de Secuencia de Aminoácido , Temperatura , Termodinámica
9.
Plant Cell ; 18(12): 3606-16, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17158606

RESUMEN

Mg-chelatase catalyzes the insertion of Mg2+ into protoporphyrin IX at the first committed step of the chlorophyll biosynthetic pathway. It consists of three subunits: I, D, and H. The I subunit belongs to the AAA protein superfamily (ATPases associated with various cellular activities) that is known to form hexameric ring structures in an ATP-dependant fashion. Dominant mutations in the I subunit revealed that it functions in a cooperative manner. We demonstrated that the D subunit forms ATP-independent oligomeric structures and should also be classified as an AAA protein. Furthermore, we addressed the question of cooperativity of the D subunit with barley (Hordeum vulgare) mutant analyses. The recessive behavior in vivo was explained by the absence of mutant proteins in the barley cell. Analogous mutations in Rhodobacter capsulatus and the resulting D proteins were studied in vitro. Mixtures of wild-type and mutant R. capsulatus D subunits showed a lower activity compared with wild-type subunits alone. Thus, the mutant D subunits displayed dominant behavior in vitro, revealing cooperativity between the D subunits in the oligomeric state. We propose a model where the D oligomer forms a platform for the stepwise assembly of the I subunits. The cooperative behavior suggests that the D oligomer takes an active part in the conformational dynamics between the subunits of the enzyme.


Asunto(s)
Clorofila/biosíntesis , Genes Dominantes , Genes Recesivos , Hordeum/enzimología , Hordeum/genética , Liasas/deficiencia , Metaloendopeptidasas/metabolismo , Secuencia de Aminoácidos , Catálisis , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Liasas/química , Liasas/genética , Liasas/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Fenotipo , Hojas de la Planta/enzimología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/deficiencia , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rhodobacter capsulatus/ultraestructura , Plantones/enzimología
10.
Biochem J ; 400(3): 477-84, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16928192

RESUMEN

Magnesium chelatase inserts Mg2+ into protoporphyrin IX and is the first unique enzyme of the chlorophyll biosynthetic pathway. It is a heterotrimeric enzyme, composed of I- (40 kDa), D- (70 kDa) and H- (140 kDa) subunits. The I- and D-proteins belong to the family of AAA+ (ATPases associated with various cellular activities), but only I-subunit hydrolyses ATP to ADP. The D-subunits provide a platform for the assembly of the I-subunits, which results in a two-tiered hexameric ring complex. However, the D-subunits are unstable in the chloroplast unless ATPase active I-subunits are present. The H-subunit binds protoporphyrin and is suggested to be the catalytic subunit. Previous studies have indicated that the H-subunit also has ATPase activity, which is in accordance with an earlier suggested two-stage mechanism of the reaction. In the present study, we demonstrate that gel filtration chromatography of affinity-purified Rhodobacter capsulatus H-subunit produced in Escherichia coli generates a high- and a low-molecular-mass fraction. Both fractions were dominated by the H-subunit, but the ATPase activity was only found in the high-molecular-mass fraction and magnesium chelatase activity was only associated with the low-molecular-mass fraction. We demonstrated that light converted monomeric low-molecular-mass H-subunit into high-molecular-mass aggregates. We conclude that ATP utilization by magnesium chelatase is solely connected to the I-subunit and suggest that a contaminating E. coli protein, which binds to aggregates of the H-subunit, caused the previously reported ATPase activity of the H-subunit.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Artefactos , Clorofila/biosíntesis , Liasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Luz , Plantas/metabolismo , Subunidades de Proteína/metabolismo , Protoporfirinas/metabolismo , Rhodobacter capsulatus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...