Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37745559

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with high mortality and limited efficacious therapeutic options. PDAC cells undergo metabolic alterations to survive within a nutrient-depleted tumor microenvironment. One critical metabolic shift in PDAC cells occurs through altered isoform expression of the glycolytic enzyme, pyruvate kinase (PK). Pancreatic cancer cells preferentially upregulate pyruvate kinase muscle isoform 2 isoform (PKM2). PKM2 expression reprograms many metabolic pathways, but little is known about its impact on cystine metabolism. Cystine metabolism is critical for supporting survival through its role in defense against ferroptosis, a non-apoptotic iron-dependent form of cell death characterized by unchecked lipid peroxidation. To improve our understanding of the role of PKM2 in cystine metabolism and ferroptosis in PDAC, we generated PKM2 knockout (KO) human PDAC cells. Fascinatingly, PKM2KO cells demonstrate a remarkable resistance to cystine starvation mediated ferroptosis. This resistance to ferroptosis is caused by decreased PK activity, rather than an isoform-specific effect. We further utilized stable isotope tracing to evaluate the impact of glucose and glutamine reprogramming in PKM2KO cells. PKM2KO cells depend on glutamine metabolism to support antioxidant defenses against lipid peroxidation, primarily by increased glutamine flux through the malate aspartate shuttle and utilization of ME1 to produce NADPH. Ferroptosis can be synergistically induced by the combination of PKM2 activation and inhibition of the cystine/glutamate antiporter in vitro. Proof-of-concept in vivo experiments demonstrate the efficacy of this mechanism as a novel treatment strategy for PDAC.

2.
Biochem Pharmacol ; 216: 115763, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37625554

RESUMEN

Anti-hormone therapies are not efficacious for reducing the incidence of triple negative breast cancer (TNBC), which lacks both estrogen and progesterone receptors. While the etiology of this aggressive breast cancer subtype is unclear, visceral obesity is a strong risk factor for both pre- and post-menopausal cases. The mechanism by which excessive deposition of visceral adipose tissue (VAT) promotes the malignant transformation of hormone receptor-negative mammary epithelial cells is currently unknown. We developed a novel in vitro system of malignant transformation in which non-tumorigenic human breast epithelial cells (MCF-10A) grow in soft agar when cultured with factors released from VAT. These cells, which acquire the capacity for 3D growth, show elevated aryl hydrocarbon receptor (AhR) protein and AhR target genes, suggesting that AhR activity may drive malignant transformation by VAT. AhR is a ligand-dependent transcription factor that generates biological responses to exogenous carcinogens and to the endogenous tryptophan pathway metabolite, kynurenine. The serum kynurenine to tryptophan ratio has been shown to be elevated in patients with obesity. Herein, we demonstrate that AhR inhibitors or knockdown of AhR in MCF-10A cells prevents VAT-induced malignant transformation. Specifically, VAT-induced transformation is inhibited by Kyn-101, an inhibitor for the endogenous ligand binding site of AhR. Mass spectrometry analysis demonstrates that adipocytes metabolize tryptophan and release kynurenine, which is taken up by MCF-10A cells and activates the AhR to induce CYP1B1 and promote malignant transformation. This novel hormone receptor-independent mechanism of malignant transformation suggests targeting AhR for TNBC prevention in the context of visceral adiposity.


Asunto(s)
Quinurenina , Neoplasias de la Mama Triple Negativas , Humanos , Adipocitos/metabolismo , Células Epiteliales/metabolismo , Hormonas/metabolismo , Quinurenina/metabolismo , Ligandos , Receptores de Hidrocarburo de Aril/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Triptófano/metabolismo
3.
PLoS Genet ; 19(7): e1010834, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418503

RESUMEN

Sulfur is an indispensable element for bacterial proliferation. Prior studies demonstrated that the human pathogen Staphylococcus aureus utilizes glutathione (GSH) as a source of nutrient sulfur; however, mechanisms of GSH acquisition are not defined. Here, we identify a five-gene locus comprising a putative ABC-transporter and predicted γ-glutamyl transpeptidase (ggt) that promotes S. aureus proliferation in medium supplemented with either reduced or oxidized GSH (GSSG) as the sole source of nutrient sulfur. Based on these phenotypes, we name this transporter operon the glutathione import system (gisABCD). Ggt is encoded within the gisBCD operon, and we show that the enzyme is capable of liberating glutamate using either GSH or GSSG as substrates, demonstrating it is a bona fide γ-glutamyl transpeptidase. We also determine that Ggt is expressed in the cytoplasm, representing only the second example of cytoplasmic Ggt localization, the other being Neisseria meningitidis. Bioinformatic analyses revealed that Staphylococcus species closely related to S. aureus encode GisABCD-Ggt homologs. However, homologous systems were not detected in Staphylococcus epidermidis. Consequently, we establish that GisABCD-Ggt provides a competitive advantage for S. aureus over S. epidermidis in a GSH- and GSSG-dependent manner. Overall, this study describes the discovery of a nutrient sulfur acquisition system in S. aureus that targets GSSG in addition to GSH and promotes competition against other staphylococci commonly associated with the human microbiota.


Asunto(s)
Staphylococcus aureus , gamma-Glutamiltransferasa , Humanos , Staphylococcus aureus/genética , gamma-Glutamiltransferasa/genética , Disulfuro de Glutatión , Glutatión/genética , Azufre
4.
Cell Metab ; 35(1): 118-133.e7, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599297

RESUMEN

Immunoediting sculpts immunogenicity and thwarts host anti-tumor responses in tumor cells during tumorigenesis; however, it remains unknown whether metabolic programming of tumor cells can be guided by immunosurveillance. Here, we report that T cell-mediated immunosurveillance in early-stage tumorigenesis instructs c-Myc upregulation and metabolic reprogramming in tumor cells. This previously unexplored tumor-immune interaction is controlled by non-canonical interferon gamma (IFNγ)-STAT3 signaling and supports tumor immune evasion. Our findings uncover that immunoediting instructs deregulated bioenergetic programs in tumor cells to empower them to disarm the T cell-mediated immunosurveillance by imposing metabolic tug-of-war between tumor and infiltrating T cells and forming the suppressive tumor microenvironment.


Asunto(s)
Evasión Inmune , Neoplasias , Humanos , Neoplasias/patología , Interferón gamma/metabolismo , Linfocitos T/metabolismo , Carcinogénesis , Transformación Celular Neoplásica , Microambiente Tumoral
5.
Chemistry ; 29(7): e202202881, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351205

RESUMEN

Photodynamic therapy (PDT) is currently limited by the inability of photosensitizers (PSs) to enter cancer cells and generate sufficient reactive oxygen species. Utilizing phosphorescent triplet states of novel PSs to generate singlet oxygen offers exciting possibilities for PDT. Here, we report phosphorescent octahedral molybdenum (Mo)-based nanoclusters (NC) with tunable toxicity for PDT of cancer cells without use of rare or toxic elements. Upon irradiation with blue light, these molecules are excited to their singlet state and then undergo intersystem crossing to their triplet state. These NCs display surprising tunability between their cellular cytotoxicity and phototoxicity by modulating the apical halide ligand with a series of short chain fatty acids from trifluoroacetate to heptafluorobutyrate. The NCs are effective in PDT against breast, skin, pancreas, and colon cancer cells as well as their highly metastatic derivatives, demonstrating the robustness of these NCs in treating a wide variety of aggressive cancer cells. Furthermore, these NCs are internalized by cancer cells, remain in the lysosome, and can be modulated by the apical ligand to produce singlet oxygen. Thus, (Mo)-based nanoclusters are an excellent platform for optimizing PSs. Our results highlight the profound impact of molecular nanocluster chemistry in PDT applications.


Asunto(s)
Compuestos Inorgánicos , Fotoquimioterapia , Fotoquimioterapia/métodos , Oxígeno Singlete/química , Ligandos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/química , Molibdeno
6.
ACS Appl Mater Interfaces ; 14(48): 53511-53522, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36408853

RESUMEN

Photodynamic therapy (PDT) has the potential to improve cancer treatment by providing dual selectivity through the use of both photoactive agent and light, with the goal of minimal harmful effects from either the agent or light alone. However, current PDT is limited by insufficient photosensitizers (PSs) that can suffer from low tissue penetration, insufficient phototoxicity (toxicity with light irradiation), or undesirable cytotoxicity (toxicity without light irradiation). Recently, we reported a platform for decoupling optical and electronic properties with counterions that modulate frontier molecular orbital levels of a photoactive ion. Here, we demonstrate the utility of this platform in vivo by pairing near-infrared (NIR) photoactive heptamethine cyanine cation (Cy+), which has enhanced optical properties for deep tissue penetration, with counterions that make it cytotoxic, phototoxic, or nontoxic in a mouse model of breast cancer. We find that pairing Cy+ with weakly coordinating anion FPhB- results in a selectively phototoxic PS (CyFPhB) that stops tumor growth in vivo with minimal side effects. This work provides proof of concept that our counterion pairing platform can be used to generate improved cancer PSs that are selectively phototoxic to tumors and nontoxic to normal healthy tissues.


Asunto(s)
Neoplasias , Sales (Química) , Animales , Ratones , Neoplasias/tratamiento farmacológico
7.
Mol Cell ; 82(17): 3119-3121, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055204

RESUMEN

In this issue of Molecular Cell, Wang et al. investigate the Warburg effect in proliferating cells and demonstrate that lactate fermentation is a secondary mechanism activated after mitochondrial shuttles exceed their capacity to oxidize cytosolic NADH.


Asunto(s)
Mitocondrias , NAD , Fermentación , Glucólisis , Lactatos/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Oxidación-Reducción
9.
Nature ; 605(7911): 747-753, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35585241

RESUMEN

Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs1. Genetic, transcriptional and translational heterogeneity contributes to this dynamic process2,3. Metabolic heterogeneity has also been observed4, yet its role in cancer progression is less explored. Here we find that the loss of phosphoglycerate dehydrogenase (PHGDH) potentiates metastatic dissemination. Specifically, we find that heterogeneous or low PHGDH expression in primary tumours of patients with breast cancer is associated with decreased metastasis-free survival time. In mice, circulating tumour cells and early metastatic lesions are enriched with Phgdhlow cancer cells, and silencing Phgdh in primary tumours increases metastasis formation. Mechanistically, Phgdh interacts with the glycolytic enzyme phosphofructokinase, and the loss of this interaction activates the hexosamine-sialic acid pathway, which provides precursors for protein glycosylation. As a consequence, aberrant protein glycosylation occurs, including increased sialylation of integrin αvß3, which potentiates cell migration and invasion. Inhibition of sialylation counteracts the metastatic ability of Phgdhlow cancer cells. In conclusion, although the catalytic activity of PHGDH supports cancer cell proliferation, low PHGDH protein expression non-catalytically potentiates cancer dissemination and metastasis formation. Thus, the presence of PHDGH heterogeneity in primary tumours could be considered a sign of tumour aggressiveness.


Asunto(s)
Neoplasias de la Mama , Metástasis de la Neoplasia , Fosfoglicerato-Deshidrogenasa , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Femenino , Silenciador del Gen , Humanos , Ratones , Fosfoglicerato-Deshidrogenasa/genética , Serina/metabolismo
10.
Cell Metab ; 34(5): 731-746.e9, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35452600

RESUMEN

Glycolysis, including both lactate fermentation and pyruvate oxidation, orchestrates CD8+ T cell differentiation. However, how mitochondrial pyruvate metabolism and uptake controlled by the mitochondrial pyruvate carrier (MPC) impact T cell function and fate remains elusive. We found that genetic deletion of MPC drives CD8+ T cell differentiation toward a memory phenotype. Metabolic flexibility induced by MPC inhibition facilitated acetyl-coenzyme-A production by glutamine and fatty acid oxidation that results in enhanced histone acetylation and chromatin accessibility on pro-memory genes. However, in the tumor microenvironment, MPC is essential for sustaining lactate oxidation to support CD8+ T cell antitumor function. We further revealed that chimeric antigen receptor (CAR) T cell manufacturing with an MPC inhibitor imprinted a memory phenotype and demonstrated that infusing MPC inhibitor-conditioned CAR T cells resulted in superior and long-lasting antitumor activity. Altogether, we uncover that mitochondrial pyruvate uptake instructs metabolic flexibility for guiding T cell differentiation and antitumor responses.


Asunto(s)
Células T de Memoria , Transportadores de Ácidos Monocarboxílicos , Lactatos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo
11.
Metabolites ; 12(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35208252

RESUMEN

A large percentage of infants develop viral bronchiolitis needing medical intervention and often develop further airway disease such as asthma. To characterize metabolic perturbations in acute respiratory syncytial viral (RSV) bronchiolitis, we compared metabolomic profiles of moderate and severe RSV patients versus sedation controls. RSV patients were classified as moderate or severe based on the need for invasive mechanical ventilation. Whole blood and urine samples were collected at two time points (baseline and 72 h). Plasma and urinary metabolites were extracted in cold methanol and analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), and data from the two biofluids were combined for multivariate data analysis. Metabolite profiles were clustered according to severity, characterized by unique metabolic changes in both plasma and urine. Plasma metabolites that correlated with severity included intermediates in the sialic acid biosynthesis, while urinary metabolites included citrate as well as multiple nucleotides. Furthermore, metabolomic profiles were predictive of future development of asthma, with urinary metabolites exhibiting higher predictive power than plasma. These metabolites may offer unique insights into the pathology of RSV bronchiolitis and may be useful in identifying patients at risk for developing asthma.

12.
Children (Basel) ; 9(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35053739

RESUMEN

The feasibility of gastrointestinal (GI) microbiome work in a pediatric intensive care unit (PICU) to determine the GI microbiota composition of infants as compared to control infants from the same hospital was investigated. In a single-site observational study at an urban quaternary care children's hospital in Western Michigan, subjects less than 6 months of age, admitted to the PICU with severe respiratory syncytial virus (RSV) bronchiolitis, were compared to similarly aged control subjects undergoing procedural sedation in the outpatient department. GI microbiome samples were collected at admission (n = 20) and 72 h (n = 19) or at time of sedation (n = 10). GI bacteria were analyzed by sequencing the V4 region of the 16S rRNA gene. Alpha and beta diversity were calculated. Mechanical ventilation was required for the majority (n = 14) of study patients, and antibiotics were given at baseline (n = 8) and 72 h (n = 9). Control subjects' bacterial communities contained more Porphyromonas, and Prevotella (p = 0.004) than those of PICU infants. The ratio of Prevotella to Bacteroides was greater in the control than the RSV infants (mean ± SD-1.27 ± 0.85 vs. 0.61 ± 0.75: p = 0.03). Bacterial communities of PICU infants were less diverse than those of controls with a loss of potentially protective populations.

13.
Sci Transl Med ; 13(614): eabc0497, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34613815

RESUMEN

Childhood posterior fossa group A ependymomas (PFAs) have limited treatment options and bear dismal prognoses compared to group B ependymomas (PFBs). PFAs overexpress the oncohistone-like protein EZHIP (enhancer of Zeste homologs inhibitory protein), causing global reduction of repressive histone H3 lysine 27 trimethylation (H3K27me3), similar to the oncohistone H3K27M. Integrated metabolic analyses in patient-derived cells and tumors, single-cell RNA sequencing of tumors, and noninvasive metabolic imaging in patients demonstrated enhanced glycolysis and tricarboxylic acid (TCA) cycle metabolism in PFAs. Furthermore, high glycolytic gene expression in PFAs was associated with a poor outcome. PFAs demonstrated high EZHIP expression associated with poor prognosis and elevated activating mark histone H3 lysine 27 acetylation (H3K27ac). Genomic H3K27ac was enriched in PFAs at key glycolytic and TCA cycle­related genes including hexokinase-2 and pyruvate dehydrogenase. Similarly, mouse neuronal stem cells (NSCs) expressing wild-type EZHIP (EZHIP-WT) versus catalytically attenuated EZHIP-M406K demonstrated H3K27ac enrichment at hexokinase-2 and pyruvate dehydrogenase, accompanied by enhanced glycolysis and TCA cycle metabolism. AMPKα-2, a key component of the metabolic regulator AMP-activated protein kinase (AMPK), also showed H3K27ac enrichment in PFAs and EZHIP-WT NSCs. The AMPK activator metformin lowered EZHIP protein concentrations, increased H3K27me3, suppressed TCA cycle metabolism, and showed therapeutic efficacy in vitro and in vivo in patient-derived PFA xenografts in mice. Our data indicate that PFAs and EZHIP-WT­expressing NSCs are characterized by enhanced glycolysis and TCA cycle metabolism. Repurposing the antidiabetic drug metformin lowered pathogenic EZHIP, increased H3K27me3, and suppressed tumor growth, suggesting that targeting integrated metabolic/epigenetic pathways is a potential therapeutic strategy for treating childhood ependymomas.


Asunto(s)
Ependimoma , Histonas , Animales , Niño , Ependimoma/genética , Epigénesis Genética , Epigenómica , Histonas/genética , Humanos , Redes y Vías Metabólicas , Ratones
14.
Annu Rev Biomed Eng ; 23: 29-60, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34255992

RESUMEN

Photoactive agents are promising complements for both early diagnosis and targeted treatment of cancer. The dual combination of diagnostics and therapeutics is known as theranostics. Photoactive theranostic agents are activated by a specific wavelength of light and emit another wavelength, which can be detected for imaging tumors, used to generate reactive oxygen species for ablating tumors, or both. Photodynamic therapy (PDT) combines photosensitizer (PS) accumulation and site-directed light irradiation for simultaneous imaging diagnostics and spatially targeted therapy. Although utilized since the early 1900s, advances in the fields of cancer biology, materials science, and nanomedicine have expanded photoactive agents to modern medical treatments. In this review we summarize the origins of PDT and the subsequent generations of PSs and analyze seminal research contributions that have provided insight into rational PS design, such as photophysics, modes of cell death, tumor-targeting mechanisms, and light dosing regimens. We highlight optimizable parameters that, with further exploration, can expand clinical applications of photoactive agents to revolutionize cancer diagnostics and treatment.


Asunto(s)
Neoplasias , Fotoquimioterapia , Línea Celular Tumoral , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico
15.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1147-L1157, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33851876

RESUMEN

Viral infections affecting the lower respiratory tract place enormous burdens on hospitals. As neither vaccines nor antiviral agents exist for many viruses, understanding risk factors and outcomes in each patient using minimally invasive analysis, such as blood, can lead to improved health care delivery. A cohort of PAXgene RNA sequencing of infants admitted with moderate or severe acute bronchiolitis and respiratory syncytial virus were compared with case-control statistical analysis and cohort-based outlier mapping for precision transcriptomics. Patients with severe bronchiolitis had signatures connected to the immune system, interferon signaling, and cytokine signaling, with marked sex differences in XIST, RPS4Y1, KDM5D, and LINC00278 for severity. Several patients had unique secondary infections, cytokine activation, immune responses, biological pathways, and immune cell activation, highlighting the need for defining patient-level transcriptomic signatures. Balancing relative contributions of cohort-based biomarker discoveries with patient's biological responses is needed to understand the totality of mechanisms of adverse outcomes in viral bronchiolitis.


Asunto(s)
Bronquiolitis Viral/virología , Antígenos de Histocompatibilidad Menor/farmacología , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Transcriptoma/efectos de los fármacos , Bronquiolitis Viral/sangre , Humanos , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/patogenicidad , Índice de Severidad de la Enfermedad , Transcriptoma/inmunología , Virosis/tratamiento farmacológico , Virosis/virología
16.
Mol Cell ; 81(2): 386-397.e7, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33340488

RESUMEN

In tumors, nutrient availability and metabolism are known to be important modulators of growth signaling. However, it remains elusive whether cancer cells that are growing out in the metastatic niche rely on the same nutrients and metabolic pathways to activate growth signaling as cancer cells within the primary tumor. We discovered that breast-cancer-derived lung metastases, but not the corresponding primary breast tumors, use the serine biosynthesis pathway to support mTORC1 growth signaling. Mechanistically, pyruvate uptake through Mct2 supported mTORC1 signaling by fueling serine biosynthesis-derived α-ketoglutarate production in breast-cancer-derived lung metastases. Consequently, expression of the serine biosynthesis enzyme PHGDH was required for sensitivity to the mTORC1 inhibitor rapamycin in breast-cancer-derived lung tumors, but not in primary breast tumors. In summary, we provide in vivo evidence that the metabolic and nutrient requirements to activate growth signaling differ between the lung metastatic niche and the primary breast cancer site.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Mamarias Experimentales/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Fosfoglicerato-Deshidrogenasa/genética , Serina/biosíntesis , Animales , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Ácidos Cetoglutáricos/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Fosfoglicerato-Deshidrogenasa/antagonistas & inhibidores , Fosfoglicerato-Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Sirolimus/farmacología
17.
Cancer Res ; 81(2): 303-314, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33115804

RESUMEN

Investigating metabolic rewiring in cancer can lead to the discovery of new treatment strategies for breast cancer subtypes that currently lack targeted therapies. In this study, we used MMTV-Myc-driven tumors to model breast cancer heterogeneity, investigating the metabolic differences between two histologic subtypes, the epithelial-mesenchymal transition (EMT) and the papillary subtypes. A combination of genomic and metabolomic techniques identified differences in nucleotide metabolism between EMT and papillary subtypes. EMT tumors preferentially used the nucleotide salvage pathway, whereas papillary tumors preferred de novo nucleotide biosynthesis. CRISPR/Cas9 gene editing and mass spectrometry-based methods revealed that targeting the preferred pathway in each subtype resulted in greater metabolic impact than targeting the nonpreferred pathway. Knocking out the preferred nucleotide pathway in each subtype has a deleterious effect on in vivo tumor growth, whereas knocking out the nonpreferred pathway has a lesser effect or may even result in increased tumor growth. Collectively, these data suggest that significant differences in metabolic pathway utilization distinguish EMT and papillary subtypes of breast cancer and identify said pathways as a means to enhance subtype-specific diagnoses and treatment strategies. SIGNIFICANCE: These findings uncover differences in nucleotide salvage and de novo biosynthesis using a histologically heterogeneous breast cancer model, highlighting metabolic vulnerabilities in these pathways as promising targets for breast cancer subtypes.


Asunto(s)
Vías Biosintéticas , Neoplasias de la Mama/patología , Carcinoma Papilar/patología , Proliferación Celular , Transición Epitelial-Mesenquimal , Nucleótidos/biosíntesis , Animales , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Movimiento Celular , Femenino , Humanos , Ratones , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Cancer Invest ; 38(8-9): 502-506, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32935594

RESUMEN

Pancreatic cancer (PC) is associated with a high mortality rate. We explored the interindividual variation of cancer outcomes, attributable to DNA methylation, gene expression, and clinical factors among PC patients. We aim to determine whether we could differentiate subjects with greater nodal involvement, higher cancer staging, and subsequent survival. We modeled every response variable as a function of a linear predictor involving the effects of clinical variables, methylation, and gene expression in a Bayesian framework. Our results highlight the overall importance of wide-spread alterations in methylation and gene expression patterns associated with survival, nodal metastasis, and staging.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Metilación de ADN , Neoplasias Pancreáticas/genética , Teorema de Bayes , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Humanos , Ganglios Linfáticos/patología , Metástasis Linfática , Modelos Estadísticos , Estadificación de Neoplasias , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Análisis de Supervivencia , Transcriptoma
19.
Cancer Lett ; 492: 21-30, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32768525

RESUMEN

Dysregulated metabolism is a hallmark of cancer that supports tumor growth and metastasis. One understudied aspect of cancer metabolism is altered nucleotide sugar biosynthesis, which drives aberrant cell surface glycosylation known to support various aspects of cancer cell behavior including migration and signaling. We examined clinical association of nucleotide sugar pathway gene expression and found that UGDH, encoding UDP-glucose 6-dehydrogenase which catalyzes production of UDP-glucuronate, is associated with worse breast cancer patient survival. Knocking out the mouse homolog Ugdh in highly-metastatic 6DT1 breast cancer cells impaired migration ability without affecting in vitro proliferation. Further, Ugdh-KO resulted in significantly decreased metastatic capacity in vivo when the cells were orthotopically injected in syngeneic mice. Our experiments show that UDP-glucuronate biosynthesis is critical for metastasis in a mouse model of breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias Pulmonares/secundario , Uridina Difosfato Glucosa Deshidrogenasa/fisiología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal , Femenino , Humanos , Ratones , Uridina Difosfato Ácido Glucurónico/biosíntesis
20.
Cell Oncol (Dordr) ; 43(6): 1117-1127, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32691367

RESUMEN

PURPOSE: Breast cancer is a heterogeneous disease with several subtypes that currently do not have targeted therapeutic options. Metabolomics has the potential to uncover novel targeted treatment strategies by identifying metabolic pathways required for cancer cells to survive and proliferate. METHODS: The metabolic profiles of two histologically distinct breast cancer subtypes from a MMTV-Myc mouse model, epithelial-mesenchymal-transition (EMT) and papillary, were investigated using mass spectrometry-based metabolomics methods. Based on metabolic profiles, drugs most likely to be effective against each subtype were selected and tested. RESULTS: We found that the EMT and papillary subtypes display different metabolic preferences. Compared to the papillary subtype, the EMT subtype exhibited increased glutathione and TCA cycle metabolism, while the papillary subtype exhibited increased nucleotide biosynthesis compared to the EMT subtype. Targeting these distinct metabolic pathways effectively inhibited cancer cell proliferation in a subtype-specific manner. CONCLUSIONS: Our results demonstrate the feasibility of metabolic profiling to develop novel personalized therapy strategies for different subtypes of breast cancer. Schematic overview of the experimental design for drug selection based on breast cancer subtype-specific metabolism. The epithelial mesenchymal transition (EMT) and papillary tumors are histologically distinct mouse mammary tumor subtypes from the MMTV-Myc mouse model. Cell lines derived from tumors can be used to determine metabolic pathways that can be used to select drug candidates for each subtype.


Asunto(s)
Neoplasias Mamarias Animales/tratamiento farmacológico , Neoplasias Mamarias Animales/metabolismo , Metabolómica , Terapia Molecular Dirigida , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Isótopos de Carbono , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Neoplasias Mamarias Animales/clasificación , Virus del Tumor Mamario del Ratón/metabolismo , Metaboloma/efectos de los fármacos , Ratones , Nucleótidos/biosíntesis , Proteínas Proto-Oncogénicas c-myc/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...