Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1399743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021621

RESUMEN

Little has been known about symbiotic relationships and host specificity for symbionts in the human gut microbiome so far. Bifidobacteria are a paragon of the symbiotic bacteria biota in the human gut. In this study, we characterized the population genetic structure of three bifidobacteria species from 58 healthy mother-infant pairs of three ethnic groups in China, geographically isolated, by Rep-PCR, multi-locus sequence analysis (MLSA), and in vitro carbohydrate utilization. One hundred strains tested were incorporated into 50 sequence types (STs), of which 29 STs, 17 STs, and 4 STs belong to B. longum subsp. longum, B. breve, and B. animalis subsp. lactis, respectively. The conspecific strains from the same mother-child pair were genetically very similar, supporting the vertical transmission of Bifidobacterium phylotypes from mother to offspring. In particular, results based on allele profiles and phylogeny showed that B. longum subsp. longum and B. breve exhibited considerable intraspecies genetic heterogeneity across three ethnic groups, and strains were clustered into ethnicity-specific lineages. Yet almost all strains of B. animalis subsp. lactis were incorporated into the same phylogenetic clade, regardless of ethnic origin. Our findings support the hypothesis of co-evolution between human gut symbionts and their respective populations, which is closely linked to the lifestyle of specific bacterial lineages. Hence, the natural and evolutionary history of Bifidobacterium species would be an additional consideration when selecting bifidobacterial strains for industrial and therapeutic applications.

2.
Front Microbiol ; 13: 814284, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35387090

RESUMEN

The maternal gut is thought to be the principal source of potential probiotic bacteria in the infant gut during the lactation stage. It is not clear whether facultative symbiont lactobacilli strictly follow vertical transmission from mother to infant and display the ethnic specificity in terms of species and strain composition in mother-infant cohorts. In the present study, a total of 16 former Lactobacillus species (365 strains) and 11 species (280 strains) were retrieved from 31 healthy mother-infant pairs of two ethnic groups, which have never intermarried, respectively. The result showed that the composition and number of Lactobacillus species between the two ethnic groups varied. Among 106 Lacticaseibacillus paracasei strains isolated, 64 representative strains were classified into 27 sequence types (ST) by means of multilocus sequence typing (MLST), of which 20 STs derived from 33 Uighur strains and 7 STs from 31 Li strains, and no homologous recombination event of genes was detected between strains of different ethnic groups. A go-EBURST analysis revealed that except for a few mother-infant pairs in which more than one STs were detected, L. paracasei isolates from the same mother-infant pair were found to be monophyletic in most cases, confirming vertical transfer of Lactobacillus at the strain level. More notably, L. paracasei isolates from the same ethnic group were more likely than strains from another to be incorporated into a specific phylogenetic clade or clonal complex (CC) with similar metabolic profile of glycan, supporting the hypothesis of ethnic specificity to a large degree. Our study provides evidence for the development of personalized probiotic tailored to very homogenous localized populations from the perspective of maternal and child health.

3.
Food Chem ; 367: 130658, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34343808

RESUMEN

Camel milk is rich in nutrients and its impact on human medicine and nutrition cannot be ignored. We conducted an in-depth analysis of milk proteins obtained from two camel breed (Camelus bactrianus, CB and Camelus dromedarius, CD). Label-free proteomic technology was performed to analysis the MFGM and whey proteomes of CB and CD milk. In total, 1133 MFGM proteins and 627 whey proteins were identified from camel milk. Results revealed that 216 MFGM proteins and 109 whey proteins were significantly different between them. In addition, the cellular process, cell and binding were the predominately GO annotations of milk proteins. KEGG analysis shown that most proteins were involved in metabolic pathways. Furthermore, many proteins were found to be involved in PI3K/AKT signaling pathway, which could be the possible reason for hypoglycemic effect of camel milk. These results could provide a further understanding for unique biological characteristics of camel milk proteins.


Asunto(s)
Camelus , Proteoma , Animales , Glucolípidos , Glicoproteínas , Gotas Lipídicas , Proteínas de la Leche , Fosfatidilinositol 3-Quinasas , Proteómica , Suero Lácteo , Proteína de Suero de Leche
4.
Front Microbiol ; 12: 705947, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434176

RESUMEN

Staphylococcus aureus is one of the main pathogens causing mastitis in dairy animals worldwide. It is an important opportunistic pathogen of raw milk, and the enterotoxin causes significant food poisoning. Monitoring the antibiotic resistance of S. aureus in raw milk is helpful for a risk assessment of S. aureus. In this study, 62 strains (43.1%) of S. aureus were isolated from 144 retail raw milk samples of different varieties from four regions in northern Xinjiang, China. Among them, the isolation rates at Shihezi, Hami, Altay, and Tacheng were 58.1% (54/93), 12.9% (4/31), 18.2% (2/11), and 22.2% (2/9), respectively. The isolation rate of positive strains in cow milk samples was the highest (61.7%, 37/60), followed by camel milk (35.9%, 23/64), and horse milk (10.0%, 2/20). The results of the classical virulence genes test showed that 12.9% (8/62) of the isolates carried at least one virulence gene. The main genotype was see (6.5%, 4/62), followed by sea+sec (3.2%, 2/62), sea (1.6%, 1/62), and sec (1.6%, 1/62). The analysis of 13 resistance genes and the susceptibility to 12 different antibiotics of 62 isolates showed that 80.6% (50/62) of the strains were resistant to at least one antibiotic, and 46.8% (29/62) were resistant to three or more antibiotics. The isolated strains had the highest resistance rate to penicillin (72.6%, 45/62), and 25.8% (16/62) of the isolates carried the blaZ resistance gene. In addition, 32 strains (51.6%, 32/62) of methicillin-resistant S. aureus were detected. All isolates had the ability to form biofilms. The pulsed-field gel electrophoresis results showed that the 47 isolates revealed 13 major pulsotypes (P1-P13) and 26 subtypes with 80% similarity, indicating the overall genetic diversity in the distribution area and sources of the samples. These findings indicate that S. aureus causes serious pollution of raw milk in northern Xinjiang, which has a negative effect on public health. Therefore, control measures and continuous monitoring should be undertaken to ensure the quality and safety of raw milk.

5.
Front Microbiol ; 12: 669442, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163448

RESUMEN

Breast milk acts as an intermediary for the transfer of functionally important commensal bacteria from mother to infant, especially for Bifidobacterium that can colonize the infant gut. However, the vast majority of rRNA amplicon-based studies reported the conspicuous intercohort and interindividual variation for the prevalence of Bifidobacterium in breast milk. In order to elucidate whether Bifidobacterium phylotypes persistently co-occured at the species or strain level in mother-breast milk-infant triads, we analyzed collectively the next-generation sequencing (NGS) datasets of bacterial 16S rRNA gene and the Bifidobacterium-specific groEL gene from maternal feces, breast milk, and infant feces in a small yet very homogeneous cohort of 25 healthy Uyghur mother-infant pairs (lactation for 7-720 days) in Kashgar, Xinjiang, China. Overall, 16S rRNA gene analysis showed that microbiome in the newborn gut was closer to that of breast milk in the first 4 months of lactation, and subsequently showed an obvious trend of adulthood at 6-12 months. Based on the BLAST accurate taxonomic result of the representative sequences of all ASVs (amplicon sequencing variants), only three sets of ASVs could be clearly assigned into Bifidobacterium species, whereas the remaining eight sets of ASVs corresponded to four indefinite Bifidobacterium species group. By contrast, the groEL gene dataset was partitioned into 376 ASVs, at least belonging to 13 well-known Bifidobacterium species or subspecies, of which 15 ASVs, annotated to seven well-known Bifidobacterium species or subspecies, showed triadic synchronism in most 23 mother-infant pairs tested. However, several other rare bifidobacterial phylotypes, which were frequently encountered in animals, were found to display no correspondence of the presence between the three ecosystems of mother-infant pairs. Our test results were obviously to support the hypothesis that breast milk acts as an intermediary for the transfer of probiotic commensal bacteria from mother to infant, especially for endosymbiotic Bifidobacterium that can colonize the infant gut. Some oxygen-insensitive exogenous Bifidobacterium phylotypes with a cosmopolitan lifestyle may be indirectly transferred to breast milk and the infant's intestinal tract through environmental contamination. Thus, the groEL gene proved to be a very effective target for the depth resolution of Bifidobacterium community by high-throughput sequencing technologies.

6.
Int J Biol Macromol ; 185: 1036-1049, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34175337

RESUMEN

In this study, the chemical structure and bioactive properties of the EPS of Pediococcus acidilactici MT41-11 isolated from camel milk were investigated. Two polysaccharide fractions (EPS-1, EPS-2) with molecular weights about 69.0 kDa were obtained, which were purified using DEAE-Sepharose and Sephadex G-100 chromatography. Based on monosaccharide composition, FT-IR, and 1D, 2D NMR spectra, concluded that EPS-1 had a backbone composed of →2)-α-d-Manp-(1→, →3)-α-d-Manp-(1→ and with branches containing α-d-Manp-(1→, EPS-2 had a backbone composed of →6)-ß-d-Glcp-(1→, and with branches containing →2)-α-l-Fucp-(1→, →3)-α-d-Glcp-(1→, →2)-α-d-Glcp-(1→, ß-d-Glcp-(1→, and α-d-Glcp-(1→. Remarkably, in vitro assays showed that EPS possessed multiple bioactive properties, including stimulating Lactobacillus growth and a high DPPH free radical scavenging activity. Also, it has a good ability to anti-biofilms. Overall, the analysis of all data showed EPS from P. acidilactici MT41-11 can be used as anti-oxidant, anti-biofilm agent, and also as a potential candidate prebiotic for health food or medicine industry.


Asunto(s)
Lactobacillus/crecimiento & desarrollo , Leche/microbiología , Pediococcus acidilactici/aislamiento & purificación , Polisacáridos Bacterianos/química , Animales , Antioxidantes/química , Antioxidantes/farmacología , Camelus , Secuencia de Carbohidratos , Lactobacillus/efectos de los fármacos , Peso Molecular , Pediococcus acidilactici/química , Polisacáridos Bacterianos/farmacología
7.
J Dairy Sci ; 104(5): 5166-5184, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33714582

RESUMEN

In the present study 114 lactic acid bacteria strains, isolated from raw mare milks from pastoral areas for ethnic minorities in northwest China, were screened for probiotic traits, and their characteristics were compared with those of Lactobacillus rhamnosus GG, a commercial strain. Among the 114 strains identified, the most common species was Pediococcus pentosaceus (n = 52), followed by Leuconostoc lactis (n = 35), Lactobacillus helveticus (n = 7), Lactobacillus plantarum (n = 6), Lactobacillus kefiri (n = 5), Lactobacillus curvatus (n = 4), Lactobacillus paracasei (n = 3), and Lactococcus garvieae (n = 3). Based on acid and bile salt tolerance, 15 strains were further selected. All selected strains were subjected to a series of in vitro tests to assess their technological properties, including cell surface hydrophobicity (13.6-56.2%), autoaggregation ability (9.26-38.30%), coaggregation ability, and heat and lysozyme survival rates (84.74-94.01% and 80.52-99.37%, respectively). In vitro antagonism showed that Lb. plantarum (M5-19, M8-60, M8-59) exhibited the most strong inhibitory activity against 7 tested pathogens. Moreover, antibiotic resistance and hemolytic activity were investigated for safety assessment. No strain exhibited hemolytic activity, and most of the strains were sensitive to a series of 14 antibiotics of clinical importance. Ultimately, the principal component analysis of all data obtained above showed that 2 Lb. plantarum strains (M8-59, M8-60) and Lb. paracasei M1-36 exhibited the best potential for their inclusion as adjunct functional cultures in local fermented dairy products.


Asunto(s)
Productos Lácteos Cultivados , Lactobacillales , Probióticos , Animales , China , Femenino , Fermentación , Caballos , Lactobacillus , Lactococcus , Leuconostoc , Leche
8.
BMC Microbiol ; 20(1): 277, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912151

RESUMEN

BACKGROUND: Bifidobacteria are important probiotics; some of the beneficial effects of bifidobacteria are achieved by the hydrolysis of glycans in the human gut. However, because the diet of breastfed infants typically lacks plant-derived glycans, in the gut environment of mothers and their breastfed infants, the mother will intake a variety of plant-derived glycans, such as from onions and bananas, through her diet. Under this assumption, we are interested in whether the same species of bifidobacteria isolated from mother-infant pairs present a distinction in their hydrolysis of plant-derived carbohydrates. RESULTS: Among the 36 Bifidobacterium strains, bifidobacterial carbohydrate utilization showed two trends related to the intestinal environment where the bacteria lived. Compared with infant-type bifidobacterial strains, adult-type bifidobacterial strains preferred to use plant-derived glycans. Of these strains, 10 isolates, 2 Bifidobacterium pseudocatenulatum (B. pseudocatenulatum), 2 Bifidobacterium pseudolongum (B. pseudolongum), 2 Bifidobacterium bifidum (B. bifidum), 2 Bifidobacterium breve (B. breve), and 2 Bifidobacterium longum (B. longum), were shared between the mother-infant pairs. Moreover, the repetitive sequence-based polymerase chain reaction (rep-PCR) results illustrated that B. pseudolongum and B. bifidum showed genotypic similarities of 95.3 and 98.2%, respectively. Combined with the carbohydrate fermentation study, these results indicated that the adult-type strains have a stronger ability to use plant-derived glycans than infant-type strains. Our work suggests that bifidobacterial carbohydrate metabolism differences resulted in the selective adaptation to the distinct intestinal environment of an adult or breastfed infant. CONCLUSIONS: The present study revealed that the different gut environments can lead to the differences in the polysaccharide utilization in the same strains of bifidobacterial strains, suggesting a further goal of investigating the exact expression of certain enzymes in response to specific carbon sources.


Asunto(s)
Bifidobacterium/genética , Bifidobacterium/metabolismo , Microbioma Gastrointestinal , Madres , Polisacáridos/metabolismo , Adulto , Bifidobacterium/efectos de los fármacos , Lactancia Materna , Metabolismo de los Hidratos de Carbono , Heces/microbiología , Microbioma Gastrointestinal/genética , Técnicas de Genotipaje , Humanos , Lactante , Plantas/química , Polisacáridos/farmacología , Especificidad de la Especie
9.
Front Microbiol ; 11: 597911, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408705

RESUMEN

The maternal gut is the principal source of commensal bacteria in the infant gut during the lactation stage, where breast milk acts as an intermediary for the transfer of potential probiotic bacteria consortia, including Lactobacillus. This study aimed to characterize the bacterial communities in human milk, maternal, and infant feces in a small yet very homogeneous cohort of 25 healthy mother-infant pairs in northwestern China (n = 25, infant age from 7 days to 2 years), with special emphasis on the cooccurrence and vertical transfer of Lactobacillus phylotypes at the species or strain level in mother-breast milk-infant triads. Accurate sequencing analysis revealed that among 73 Lactobacillus zero-radius operational classification units (ZOTUs) identified, 58 belonging to 18 recognized species or species groups were distributed in all three types of samples. Lactobacillus ruminis, L. mucosae and L. gasseri-johnsonii as true residents were the most represented in all three ecosystems, whereas the content of Lactobacillus phylotypes commonly developed as probiotics was not dominant. While the numbers of Lactobacillus species in breast milk and infant feces were greater than that in maternal feces, principal coordinates analysis (PCoA) based on beta diversity, coupled with the frequency of isolates determined by culture methods, showed that the Lactobacillus community in the infant gut was more similar to that in the maternal gut than to that in breast milk, suggesting that the gut is niche selective for Lactobacillus populations. In addition, identical strains of L. ruminis, L. paracasei, L. mucosae and L. salivarius were isolated from multiple mother-infant pairs, supporting the hypothesis that vertical transfer of bacteria via breastfeeding contributes to the initial establishment of the microbiota in the developing infant intestine.

10.
Biotechnol Lett ; 41(2): 263-272, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30535881

RESUMEN

OBJECTIVES: Four kinds of oligosaccharides were used as co-encapsulating agents to test the effect of extrusion-based microencapsulation on protection of Lactobacillus fermentum L7 against exposure to simulated gastric and intestinal juices as well as long-term refrigeration storage at 4 °C. RESULTS: The combination of alginate with galacto-oligosaccharides, isomalto-oligosaccharides, fructo-oligosaccharides, and xylo-oligosaccharides, or alginate alone exhibited good properties of the beads. The diameters of the cell beads co-encapsulated with oligosaccharides and encapsulated with alginate alone were similar, in the range of 2.34-2.51 mm. However, the encapsulation yield of L. fermentum cells co-encapsulated with oligosaccharides, which was in the range of 79.52-89.75%, was significantly higher than that of cells encapsulated with alginate alone. The capsules were stable in gastric conditions and can disintegrated when exposed to intestinal conditions. Additionally, the viability of microencapsulated cells after exposure to the simulated gastric and intestinal juices as well as long-term refrigeration storage was better than that of free cells, and the viability of cells co-encapsulated with oligosaccharides was better than that of cells encapsulated with alginate alone. Furthermore, fructo-oligosaccharides used as co-encapsulating agent showed the best performance. CONCLUSIONS: Microencapsulating L. fermentum with oligosaccharides protected cells well at a low temperature and offered effective gastrointestinal delivery of probiotics, and thus has the potential to maintain bacterial survival in probiotic products and will provide the research basis for design of effective probiotic-prebiotic combinations to maximize host benefit.


Asunto(s)
Tracto Gastrointestinal/microbiología , Limosilactobacillus fermentum/crecimiento & desarrollo , Oligosacáridos/administración & dosificación , Probióticos/administración & dosificación , Alginatos/administración & dosificación , Alginatos/química , Composición de Medicamentos , Glucuronatos/administración & dosificación , Glucuronatos/química , Humanos , Viabilidad Microbiana , Leche Humana/microbiología , Oligosacáridos/química
11.
Appl Microbiol Biotechnol ; 103(5): 2311-2327, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30483846

RESUMEN

Asian cold-based glacier yeasts with respect to their abundance, distribution, and taxonomy, in contrast to other continental cryosphere areas, have been little investigated. The present study reports the diversity and phylogeny of culturable cold-adapted yeasts in six cold habitats of the Glacier No.1 in the Tianshan Mountains (northwestern China). Of the total 591 yeast isolates, 401 were identified as basidiomycetous yeasts represented by 41 species of 15 genera, while 190 ascomycetous yeast isolates were assigned to the 8 species of 7 genera. The most prevalent species was Candida akabanensis with a 19.8% frequency of occurrence, followed by Vishniacozyma victoriae (16.4%) and Diutina rugosa (9.98%), of which V. victoriae was the only yeast species common to all six glacial habitats. Variability on the component and abundance of yeast taxa among glacial habitats primarily displayed in four dominant yeast genera, namely Candida, Vishniacozyma, Filobasidium, and Naganishia. However, network analysis illustrated that most of 32 rare yeast populations were habitat-specific, implying that the low-abundance yeast population was more easily influenced by the local habitat conditions (species sorting). Based on indicator species analyses, the subglacial habitat was characterized by psychrotolerant and/or psychrophilic yeast taxa.


Asunto(s)
Adaptación Fisiológica/fisiología , Basidiomycota/clasificación , Candida/clasificación , Cubierta de Hielo/microbiología , Saccharomycetales/clasificación , Levaduras/clasificación , Basidiomycota/aislamiento & purificación , Basidiomycota/metabolismo , Biodiversidad , Candida/aislamiento & purificación , Candida/metabolismo , China , Frío , ADN Intergénico/genética , Ecosistema , Filogenia , Saccharomycetales/aislamiento & purificación , Saccharomycetales/metabolismo , Levaduras/aislamiento & purificación , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...