Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Med ; 30(1): 148, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266965

RESUMEN

BACKGROUND: Ventilator-induced lung injury (VILI) is one of the severe complications in the clinic concerning mechanical ventilation (MV). Capsaicin (CAP) has anti-inflammatory and inhibitory effects on oxidative stress, which is a significant element causing cellular ferroptosis. Nevertheless, the specific role and potential mechanistic pathways through which CAP modulates ferroptosis in VILI remain elusive. METHODS: VILI was established in vivo, and the pulmonary epithelial cell injury model induced by circulation stretching (CS) was established in vitro. Both mice and cells were pretreated with CAP. Transmission electron microscopy, ELISA, Western blot, immunofluorescence, RT-PCR, fluorescent probes, and other experimental methods were used to clarify the relationship between iron death and VILI in alveolar epithelial cells, and whether capsaicin alleviates VILI by inhibiting iron death and its specific mechanism. RESULTS: Ferroptosis was involved in VILI by utilizing in vivo models. CAP inhibited ferroptosis and alleviated VILI's lung damage and inflammation, and this protective effect of CAP was dependent on maintaining mitochondrial redox system through SITR3 signaling. In the CS-caused lung epithelial cell injury models, CAP reduced pathological CS-caused ferroptosis and cell injury. Knockdown SIRT3 reversed the role of CAP on the maintaining mitochondria dysfunction under pathological CS and eliminated its subsequent advantageous impacts for ferroptosis against overstretching cells. CONCLUSION: The outcomes showed that CAP alleviated ferroptosis in VILI via improving the activity of SITR3 to suppressing mitochondrial oxidative damage and maintaining mitochondrial redox homeostasis, illustrating its possibility as a novel therapeutic goal for VILI.


Asunto(s)
Capsaicina , Ferroptosis , Homeostasis , Mitocondrias , Oxidación-Reducción , Sirtuina 3 , Lesión Pulmonar Inducida por Ventilación Mecánica , Ferroptosis/efectos de los fármacos , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Sirtuina 3/metabolismo , Sirtuina 3/genética , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico , Oxidación-Reducción/efectos de los fármacos , Capsaicina/farmacología , Masculino , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
2.
Free Radic Biol Med ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326685

RESUMEN

Sepsis evokes compromised myocardial function prompting heart failure albeit target therapy remains dismal. Our study examined the possible role of mitophagy receptor FUNDC1 in septic cardiomyopathy. A sepsis model was established using cecal ligation and puncture (CLP) in FUNDC1 knockout (FUNDC1-/-) and WT mice prior to the evaluation of cardiac morphology, echocardiographic and cardiomyocyte contractile, oxidative stress, apoptosis, necroptosis, and ferroptosis. RNAseq analysis depicted discrepant patterns in mitophagy, oxidative stress and ferroptosis between CLP-challenged and control murine hearts. Septic patients displayed cardiac injury alongside low plasma FUNDC1 and iron levels. CLP evoked interstitial fibrosis, cardiac dysfunction (lowered ejection fraction, fractional shortening, shortening/relengthening velocity, peak shortening and electrically-stimulated intracellular Ca2+ rise, alongside increased LV end systolic diameter and relengthening duration), O2- buildup, apoptosis, necroptosis, and ferroptosis (downregulated GPX4 and SLC7A11), the responses of which were accentuated by FUNDC1 ablation. In particular, levels of lipid peroxidation enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) were upregulated following CLP procedure, with a more pronounced response in FUNDC1-/- mice. Co-immunoprecipitation and interaction interface revealed an evident interaction between FUNDC1 and ACSL4. In vitro studies revealed that the endotoxin lipopolysaccharide provoked cardiomyocyte contractile and lipid peroxidation anomalies, the responses were reversed by the mitophagy inducer oleanolic acid, inhibition of ACSL4 and ferroptosis. These findings favor a role for FUNDC1-ACSL4-ferroptosis cascade in septic cardiomyopathy.

3.
Pflugers Arch ; 476(8): 1249-1261, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38940824

RESUMEN

Chronic cerebral ischemia (CCI) is a common neurological disorder, characterized by progressive cognitive impairment. Acupoint catgut embedding (ACE) represents a modern acupuncture form that has shown neuroprotective effects; nevertheless, its effects on CCI and the mechanisms remain largely unknown. Here, we aimed to explore the therapeutic action of ACE in CCI-induced cognitive impairment and its mechanisms. The cognitive function of CCI rats was determined using Morris water maze test, and histopathological changes in the brain were assessed through hematoxylin-eosin (HE) staining. To further explore the molecular mechanisms, the expression levels of oxidative stress markers and the Ang II/AT1R/NOX axis-associated molecules in the hippocampus were evaluated using enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry. Here, we observed that ACE treatment alleviated cognitive dysfunction and histopathological injury in CCI rats. Intriguingly, candesartan (an AT1R blocker) enhanced the beneficial effects of ACE on ameliorating cognitive impairment in CCI rats. Mechanistically, ACE treatment blocked the Ang II/AT1R/NOX pathway and subsequently suppressed oxidative stress, thus mitigating cognitive impairment in CCI. Our findings first reveal that ACE treatment could suppress cognitive impairment in CCI, which might be partly due to the suppression of Ang II/AT1R/NOX axis.


Asunto(s)
Puntos de Acupuntura , Angiotensina II , Isquemia Encefálica , Disfunción Cognitiva , Estrés Oxidativo , Receptor de Angiotensina Tipo 1 , Animales , Masculino , Ratas , Terapia por Acupuntura/métodos , Angiotensina II/metabolismo , Isquemia Encefálica/metabolismo , Catgut , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/metabolismo
4.
Am J Transl Res ; 16(1): 12-26, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322570

RESUMEN

OBJECTIVES: Cancer has emerged as a global issue in terms of public health care and treatment. The significance of calcyclin binding protein (CACYBP) in various neoplasms suggests that it may serve as a novel biomarker for numerous types of human tumors. METHODS: Our research investigated the differences in CACYBP expression between cancer tissues and normal tissues using a total of 18,787 samples from multiple centers. To explore the prognostic factor of CACYBP in cancers, we utilized Cox regression analysis and Kaplan-Meier curves. We also conducted Spearman's rank correlation analyses to determine the associations of CACYBP expression with the immune microenvironment, etc. Additionally, we applied gene set enrichment analysis to explore the underlying mechanisms of CACYBP in cancers. A partial validation of CacyBP expression in cancer tissues was performed through lung adenocarcinoma samples using Western blotting and paired t-test. RESULTS: Compared to normal tissues, CACYBP exhibited high expression levels in 14 cancer types, including breast invasive carcinoma, and low expression levels in six cancers, including glioblastoma multiforme (P < 0.05). CACYBP expression was found to be significantly associated with the prognosis of 13 cancers, including adrenocortical carcinoma (P < 0.05). CACYBP demonstrated a robust ability to distinguish 15 cancers, including cholangiocarcinoma, from their control samples (area under the curve > 0.8). Furthermore, CACYBP expression was correlated with tumor mutational burden, microsatellite instability, and immune infiltration levels, indicating its potential as an exciting target for cancer treatment. CACYBP may exert its effects on several signaling pathways, including cytokine-cytokine receptor interaction, in various cancers. Compared with paired adjacent specimens, the expression level of CacyBP protein was up-regulated in lung adenocarcinoma specimens (P < 0.05), partially validating the increased expression of CACYBP in cancers. CONCLUSIONS: CACYBP has the potential to serve as a novel prognostic and predictive marker for multiple human cancers.

5.
Life Sci ; 336: 122291, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38030060

RESUMEN

AIMS: Sepsis represents a profound proinflammatory response with a major contribution from oxidative injury. Here we evaluated possible impact of heavy metal scavenger metallothionein (MT) on endotoxin lipopolysaccharide (LPS)-induced oxidative stress, endoplasmic reticulum (ER) stress, autophagy, and ferroptosis enroute to myocardial injury along with interplay among these stress domains. MATERIALS AND METHODS: Echocardiographic, cardiomyocyte mechanical and intracellular Ca2+ responses were monitored in myocardia from WT and transgenic mice with cardiac-selective MT overexpression challenged with LPS. Oxidative stress, stress signaling (p38, ERK, JNK), ER stress, autophagy, and ferroptosis were scrutinized. KEY FINDINGS: RNAseq analysis revealed discrepant patterns in ferroptosis between LPS-exposed and normal murine hearts. LPS insult enlarged LV end systolic dimension, suppressed fractional shortening, ejection fraction, maximal velocity of shortening/relengthening and peak shortening, as well as elongated relengthening along with dampened intracellular Ca2+ release and reuptake. In addition, LPS triggered oxidative stress (lowered glutathione/glutathione disulfide ratio and O2- production), activation of stress cascades (p38, ERK, JNK), ER stress (GRP78, PERK, Gadd153, and IRE1α), inflammation (TNFα and iNOS), unchecked autophagy (LCB3, Beclin-1 and Atg7), ferroptosis (GPx4 and SLC7A11) and interstitial fibrosis. Although MT overexpression itself did not reveal response on cardiac function, it attenuated or mitigated LPS-evoked alterations in echocardiographic, cardiomyocyte contractile and intracellular Ca2+ characteristics, O2- production, TNFα level, ER stress and ferroptosis (without affecting autophagy, elevated AMP/ATP ratio, and iNOS). In vitro evidence revealed beneficial effects of suppression of oxidative stress, ER stress and ferroptosis against LPS-elicited myocardial anomalies. SIGNIFICANCE: These data strongly support the therapeutic promises of MT and ferroptosis in septic cardiomyopathy.


Asunto(s)
Ferroptosis , Cardiopatías Congénitas , Sepsis , Ratones , Animales , Lipopolisacáridos/toxicidad , Metalotioneína , Endorribonucleasas , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Serina-Treonina Quinasas , Miocitos Cardíacos , Ratones Transgénicos , Autofagia , Estrés del Retículo Endoplásmico , Sepsis/complicaciones , Contracción Miocárdica
6.
Autoimmunity ; 55(8): 597-607, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018063

RESUMEN

OBJECTIVE: Researchers have investigated miR-130b-3p in lung disease pathology, such as lung fibrosis. The present study was performed to elucidate the miR-130b-3p-involved mechanism in acute lung injury (ALI) through delivery by mesenchymal stem cells-derived exosomes (MSCs-Exo). METHODS: ALI mouse models were induced via intratracheal administration of lipopolysaccharide (LPS) and treated with MSCs-Exo. Lung dry-wet (W/D) ratio, inflammatory factors in the bronchoalveolar lavage fluid, pathological damage and apoptosis in the lung tissues were analyzed. Expression levels of miR-130b-3p and TGFBR1 were measured in the mouse lung tissues, and the interaction between miR-130b-3p and TGFBR1 was studied. RESULTS: MSCs-Exo relieved LPS-induced ALI in mice by reducing lung W/D ratio and inflammatory response, and attenuating lung tissue pathological damage and reducing the alveolar cell apoptosis. miR-130b-3p delivery by MSCs-Exo reduced LPS-induced ALI in mice. TGFBR1 was determined to be a downstream target gene of miR-130b-3p. Inhibition of TGFBR1 could remit LPS-induced ALI in mice. The protection mediated by MSCs-Exo carrying miR-130b-3p could be rescued by elevating TGFBR1 expression. CONCLUSION: miR-130b-3p delivery by MSCs-Exo confers protection on ALI in mice via the downregulation of TGFBR1.


Asunto(s)
Lesión Pulmonar Aguda , Exosomas , Células Madre Mesenquimatosas , MicroARNs , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/terapia , Animales , Exosomas/genética , Exosomas/metabolismo , Lipopolisacáridos/efectos adversos , Células Madre Mesenquimatosas/metabolismo , Ratones , MicroARNs/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo
7.
Scand J Gastroenterol ; 54(2): 210-218, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30916596

RESUMEN

OBJECTIVES: The incidence of colorectal cancer (CRC) is increasing year by year and appears to be younger, due to the low early diagnosis rate and metastasis. It is difficult to remedy by conventional treatment. Here, we reported that tripartite motif containing protein 2 (TRIM2) could promote tumor growth, invasion and metastasis of CRC via a mechanism that involved EMT both in vitro and in vivo. METHODS: First, we used immunohistochemistry to detect TRIM2 expression. Next, TCGA database was applied to the coorelation between TRIM2 and CRC progression. Then, the plasmids and lentivirus particles were used to manipulate TRIM2 expression in SW620 or HT29 cells. The assays of proliferation, adhesion, magration and invasion were employed to detect the migration and invasion ability of CRC cells. Finally, a tail injection of CRC cells was used to identify the role of TRIM2 in tumor metastasis. RESULTS: TRIM2 expression was significantly higher in CRC tissues than in non-cancerous tissues and was significantly associated with some clinicopathological factors. Forced overexpression of TRIM2 promoted CRC cell proliferation, migration and invasion in vitro, while opposing results were observed when TRIM2 was depleted by short hairpin RNA. TRIM2 expression had reversely correlated with YAP signaling, which was a novel pathway way referred to tumorigenesis. Furthermore, animal metastasis models confirmed that the in vivo results were consistent with the outcomes in vitro. TRIM2 conducts its function during CRC cell metastasis by epithelial-mesenchymal transition (EMT). These results indicate that TRIM2 is a novel promoter of human colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal , Proteínas Nucleares/metabolismo , Transducción de Señal , Adulto , Anciano , Anciano de 80 o más Años , Animales , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Células HT29 , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad
8.
Cell Tissue Res ; 374(1): 137-148, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29869715

RESUMEN

The triggering receptor expressed by myeloid cells-1 (TREM-1) plays an important role in infectious and autoimmune diseases but how it contributes to ventilation-induced lung injury (VILI) and inflammation is unclear. Here, we examine the possibility that TREM-1 activates signaling dependent on Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (Myd88) and nuclear factor (NF)-κB, which leads in turn to VILI. In a mouse model of VILI, which we validated based on lung edema and histopathology as well as cytokine levels, we examine mRNA and protein levels of TREM-1, TLR4, MyD88, NF-κB and its inhibitory protein I-κB in animals subjected to ventilation at normal or high tidal volume. The extent of lung edema, injury and inflammation were higher in the high tidal volume animals, as were the expression levels of all proteins examined. Treatment with TREM-1 agonist aggravated these effects, whereas treatment with TREM-1 antagonist attenuated them. Our results suggest that aggravation of VILI by TREM-1 in mice may be associated with TLR4-MyD88-NF-κB-dependent signaling.


Asunto(s)
Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Neumonía/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Neumonía/etiología , Neumonía/patología , Edema Pulmonar/etiología , Edema Pulmonar/metabolismo , Edema Pulmonar/patología , Respiración Artificial/efectos adversos , Transducción de Señal , Lesión Pulmonar Inducida por Ventilación Mecánica/patología
9.
Int J Clin Exp Pathol ; 8(9): 10929-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26617809

RESUMEN

OBJECTIVE: This study aimed to investigate the expression and role of Nrf2 in the acute lung injury (ALI) of mice. METHODS: A total of 60 BABL/c mice were randomly divided into 2 groups: ALI group and control group. In ALI group, ALI was introduced by injection of LPS. Immunohistochemistry was performed to detect Nrf2 expression in the lung; Western blot assay was employed to detect the expression of Nrf2 in the lung homogenate; ELISA was conducted to detect the expression of Nrf2 in the lung homogenate and BALF. RESULTS: As compared to control group, ALI mice had a high Nrf2 expression in the lung as shown in immunohistochemistry, and the Nrf2 expression in the lung homogenate and BALF also increased markedly (P<0.05). CONCLUSION: The Nrf2 expression increases in the lung and BALF of ALI mice, suggesting that Nrf2 is involved in the inflammation during ALI and may serve as a new target in the therapy of ALI.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Western Blotting , Líquido del Lavado Bronquioalveolar/química , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...