Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Genom ; 4(5): 100545, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38697120

RESUMEN

Knowing the genes involved in quantitative traits provides an entry point to understanding the biological bases of behavior, but there are very few examples where the pathway from genetic locus to behavioral change is known. To explore the role of specific genes in fear behavior, we mapped three fear-related traits, tested fourteen genes at six quantitative trait loci (QTLs) by quantitative complementation, and identified six genes. Four genes, Lamp, Ptprd, Nptx2, and Sh3gl, have known roles in synapse function; the fifth, Psip1, was not previously implicated in behavior; and the sixth is a long non-coding RNA, 4933413L06Rik, of unknown function. Variation in transcriptome and epigenetic modalities occurred preferentially in excitatory neurons, suggesting that genetic variation is more permissible in excitatory than inhibitory neuronal circuits. Our results relieve a bottleneck in using genetic mapping of QTLs to uncover biology underlying behavior and prompt a reconsideration of expected relationships between genetic and functional variation.


Asunto(s)
Miedo , Sitios de Carácter Cuantitativo , Animales , Femenino , Masculino , Ratones , Conducta Animal/fisiología , Mapeo Cromosómico , Miedo/fisiología , Ratones Endogámicos C57BL , Prueba de Complementación Genética
2.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328094

RESUMEN

DNA methylation (DNAm), a crucial epigenetic mark, plays a key role in gene regulation, mammalian development, and various human diseases. Single-cell technologies enable the profiling of DNAm states at cytosines within the DNA sequence of individual cells, but they often suffer from limited coverage of CpG sites. In this study, we introduce scMeFormer, a transformer-based deep learning model designed to impute DNAm states for each CpG site in single cells. Through comprehensive evaluations, we demonstrate the superior performance of scMeFormer compared to alternative models across four single-nucleus DNAm datasets generated by distinct technologies. Remarkably, scMeFormer exhibits high-fidelity imputation, even when dealing with significantly reduced coverage, as low as 10% of the original CpG sites. Furthermore, we applied scMeFormer to a single-nucleus DNAm dataset generated from the prefrontal cortex of four schizophrenia patients and four neurotypical controls. This enabled the identification of thousands of differentially methylated regions associated with schizophrenia that would have remained undetectable without imputation and added granularity to our understanding of epigenetic alterations in schizophrenia within specific cell types. Our study highlights the power of deep learning in imputing DNAm states in single cells, and we expect scMeFormer to be a valuable tool for single-cell DNAm studies.

3.
bioRxiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38260483

RESUMEN

Knowing the genes involved in quantitative traits provides a critical entry point to understanding the biological bases of behavior, but there are very few examples where the pathway from genetic locus to behavioral change is known. Here we address a key step towards that goal by deploying a test that directly queries whether a gene mediates the effect of a quantitative trait locus (QTL). To explore the role of specific genes in fear behavior, we mapped three fear-related traits, tested fourteen genes at six QTLs, and identified six genes. Four genes, Lsamp, Ptprd, Nptx2 and Sh3gl, have known roles in synapse function; the fifth gene, Psip1, is a transcriptional co-activator not previously implicated in behavior; the sixth is a long non-coding RNA 4933413L06Rik with no known function. Single nucleus transcriptomic and epigenetic analyses implicated excitatory neurons as likely mediating the genetic effects. Surprisingly, variation in transcriptome and epigenetic modalities between inbred strains occurred preferentially in excitatory neurons, suggesting that genetic variation is more permissible in excitatory than inhibitory neuronal circuits. Our results open a bottleneck in using genetic mapping of QTLs to find novel biology underlying behavior and prompt a reconsideration of expected relationships between genetic and functional variation.

4.
Nature ; 624(7991): 366-377, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38092913

RESUMEN

Cytosine DNA methylation is essential in brain development and is implicated in various neurological disorders. Understanding DNA methylation diversity across the entire brain in a spatial context is fundamental for a complete molecular atlas of brain cell types and their gene regulatory landscapes. Here we used single-nucleus methylome sequencing (snmC-seq3) and multi-omic sequencing (snm3C-seq)1 technologies to generate 301,626 methylomes and 176,003 chromatin conformation-methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell taxonomy with 4,673 cell groups and 274 cross-modality-annotated subclasses. We identified 2.6 million differentially methylated regions across the genome that represent potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide spatial transcriptomics data validated the association of spatial epigenetic diversity with transcription and improved the anatomical mapping of our epigenetic datasets. Furthermore, chromatin conformation diversities occurred in important neuronal genes and were highly associated with DNA methylation and transcription changes. Brain-wide cell-type comparisons enabled the construction of regulatory networks that incorporate transcription factors, regulatory elements and their potential downstream gene targets. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a whole-brain SMART-seq2 dataset. Our study establishes a brain-wide, single-cell DNA methylome and 3D multi-omic atlas and provides a valuable resource for comprehending the cellular-spatial and regulatory genome diversity of the mouse brain.


Asunto(s)
Encéfalo , Metilación de ADN , Epigenoma , Multiómica , Análisis de la Célula Individual , Animales , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citosina/metabolismo , Conjuntos de Datos como Asunto , Factores de Transcripción/metabolismo , Transcripción Genética
5.
Cell Genom ; 3(12): 100454, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38116123

RESUMEN

Relating genetic variants to behavior remains a fundamental challenge. To assess the utility of DNA methylation marks in discovering causative variants, we examined their relationship to genetic variation by generating single-nucleus methylomes from the hippocampus of eight inbred mouse strains. At CpG sequence densities under 40 CpG/Kb, cells compensate for loss of methylated sites by methylating additional sites to maintain methylation levels. At higher CpG sequence densities, the exact location of a methylated site becomes more important, suggesting that variants affecting methylation will have a greater effect when occurring in higher CpG densities than in lower. We found this to be true for a variant's effect on transcript abundance, indicating that candidate variants can be prioritized based on CpG sequence density. Our findings imply that DNA methylation influences the likelihood that mutations occur at specific sites in the genome, supporting the view that the distribution of mutations is not random.

6.
Cell Genom ; 3(7): 100342, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37492103

RESUMEN

Single-cell sequencing could help to solve the fundamental challenge of linking millions of cell-type-specific enhancers with their target genes. However, this task is confounded by patterns of gene co-expression in much the same way that genetic correlation due to linkage disequilibrium confounds fine-mapping in genome-wide association studies (GWAS). We developed a non-parametric permutation-based procedure to establish stringent statistical criteria to control the risk of false-positive associations in enhancer-gene association studies (EGAS). We applied our procedure to large-scale transcriptome and epigenome data from multiple tissues and species, including the mouse and human brain, to predict enhancer-gene associations genome wide. We tested the functional validity of our predictions by comparing them with chromatin conformation data and causal enhancer perturbation experiments. Our study shows how controlling for gene co-expression enables robust enhancer-gene linkage using single-cell sequencing data.

7.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131654

RESUMEN

Cytosine DNA methylation is essential in brain development and has been implicated in various neurological disorders. A comprehensive understanding of DNA methylation diversity across the entire brain in the context of the brain's 3D spatial organization is essential for building a complete molecular atlas of brain cell types and understanding their gene regulatory landscapes. To this end, we employed optimized single-nucleus methylome (snmC-seq3) and multi-omic (snm3C-seq1) sequencing technologies to generate 301,626 methylomes and 176,003 chromatin conformation/methylome joint profiles from 117 dissected regions throughout the adult mouse brain. Using iterative clustering and integrating with companion whole-brain transcriptome and chromatin accessibility datasets, we constructed a methylation-based cell type taxonomy that contains 4,673 cell groups and 261 cross-modality-annotated subclasses. We identified millions of differentially methylated regions (DMRs) across the genome, representing potential gene regulation elements. Notably, we observed spatial cytosine methylation patterns on both genes and regulatory elements in cell types within and across brain regions. Brain-wide multiplexed error-robust fluorescence in situ hybridization (MERFISH2) data validated the association of this spatial epigenetic diversity with transcription and allowed the mapping of the DNA methylation and topology information into anatomical structures more precisely than our dissections. Furthermore, multi-scale chromatin conformation diversities occur in important neuronal genes, highly associated with DNA methylation and transcription changes. Brain-wide cell type comparison allowed us to build a regulatory model for each gene, linking transcription factors, DMRs, chromatin contacts, and downstream genes to establish regulatory networks. Finally, intragenic DNA methylation and chromatin conformation patterns predicted alternative gene isoform expression observed in a companion whole-brain SMART-seq3 dataset. Our study establishes the first brain-wide, single-cell resolution DNA methylome and 3D multi-omic atlas, providing an unparalleled resource for comprehending the mouse brain's cellular-spatial and regulatory genome diversity.

8.
Nature ; 611(7936): 532-539, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323788

RESUMEN

Neuropsychiatric disorders classically lack defining brain pathologies, but recent work has demonstrated dysregulation at the molecular level, characterized by transcriptomic and epigenetic alterations1-3. In autism spectrum disorder (ASD), this molecular pathology involves the upregulation of microglial, astrocyte and neural-immune genes, the downregulation of synaptic genes, and attenuation of gene-expression gradients in cortex1,2,4-6. However, whether these changes are limited to cortical association regions or are more widespread remains unknown. To address this issue, we performed RNA-sequencing analysis of 725 brain samples spanning 11 cortical areas from 112 post-mortem samples from individuals with ASD and neurotypical controls. We find widespread transcriptomic changes across the cortex in ASD, exhibiting an anterior-to-posterior gradient, with the greatest differences in primary visual cortex, coincident with an attenuation of the typical transcriptomic differences between cortical regions. Single-nucleus RNA-sequencing and methylation profiling demonstrate that this robust molecular signature reflects changes in cell-type-specific gene expression, particularly affecting excitatory neurons and glia. Both rare and common ASD-associated genetic variation converge within a downregulated co-expression module involving synaptic signalling, and common variation alone is enriched within a module of upregulated protein chaperone genes. These results highlight widespread molecular changes across the cerebral cortex in ASD, extending beyond association cortex to broadly involve primary sensory regions.


Asunto(s)
Trastorno del Espectro Autista , Corteza Cerebral , Variación Genética , Transcriptoma , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Neuronas/metabolismo , ARN/análisis , ARN/genética , Transcriptoma/genética , Autopsia , Análisis de Secuencia de ARN , Corteza Visual Primaria/metabolismo , Neuroglía/metabolismo
9.
Elife ; 112022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35604009

RESUMEN

Two epigenetic pathways of transcriptional repression, DNA methylation and polycomb repressive complex 2 (PRC2), are known to regulate neuronal development and function. However, their respective contributions to brain maturation are unknown. We found that conditional loss of the de novo DNA methyltransferase Dnmt3a in mouse excitatory neurons altered expression of synapse-related genes, stunted synapse maturation, and impaired working memory and social interest. At the genomic level, loss of Dnmt3a abolished postnatal accumulation of CG and non-CG DNA methylation, leaving adult neurons with an unmethylated, fetal-like epigenomic pattern at ~222,000 genomic regions. The PRC2-associated histone modification, H3K27me3, increased at many of these sites. Our data support a dynamic interaction between two fundamental modes of epigenetic repression during postnatal maturation of excitatory neurons, which together confer robustness on neuronal regulation.


Asunto(s)
ADN Metiltransferasa 3A , Código de Histonas , Neuronas , Sinapsis , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Encéfalo/fisiopatología , ADN Metiltransferasa 3A/genética , ADN Metiltransferasa 3A/metabolismo , Modelos Animales de Enfermedad , Código de Histonas/genética , Código de Histonas/fisiología , Histonas/genética , Histonas/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/fisiología , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología
10.
BMC Genomics ; 23(1): 260, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379194

RESUMEN

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused global disruption of human health and activity. Being able to trace the early outbreak of SARS-CoV-2 within a locality can inform public health measures and provide insights to contain or prevent viral transmission. Investigation of the transmission history requires efficient sequencing methods and analytic strategies, which can be generally useful in the study of viral outbreaks. METHODS: The County of Los Angeles (hereafter, LA County) sustained a large outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To learn about the transmission history, we carried out surveillance viral genome sequencing to determine 142 viral genomes from unique patients seeking care at the University of California, Los Angeles (UCLA) Health System. 86 of these genomes were from samples collected before April 19, 2020. RESULTS: We found that the early outbreak in LA County, as in other international air travel hubs, was seeded by multiple introductions of strains from Asia and Europe. We identified a USA-specific strain, B.1.43, which was found predominantly in California and Washington State. While samples from LA County carried the ancestral B.1.43 genome, viral genomes from neighboring counties in California and from counties in Washington State carried additional mutations, suggesting a potential origin of B.1.43 in Southern California. We quantified the transmission rate of SARS-CoV-2 over time, and found evidence that the public health measures put in place in LA County to control the virus were effective at preventing transmission, but might have been undermined by the many introductions of SARS-CoV-2 into the region. CONCLUSION: Our work demonstrates that genome sequencing can be a powerful tool for investigating outbreaks and informing the public health response. Our results reinforce the critical need for the USA to have coordinated inter-state responses to the pandemic.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Brotes de Enfermedades , Genómica , Humanos , Los Angeles/epidemiología , SARS-CoV-2/genética
11.
Cell Genom ; 2(3)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35419551

RESUMEN

Single-cell technologies measure unique cellular signatures but are typically limited to a single modality. Computational approaches allow the fusion of diverse single-cell data types, but their efficacy is difficult to validate in the absence of authentic multi-omic measurements. To comprehensively assess the molecular phenotypes of single cells, we devised single-nucleus methylcytosine, chromatin accessibility, and transcriptome sequencing (snmCAT-seq) and applied it to postmortem human frontal cortex tissue. We developed a cross-validation approach using multi-modal information to validate fine-grained cell types and assessed the effectiveness of computational data fusion methods. Correlation analysis in individual cells revealed distinct relations between methylation and gene expression. Our integrative approach enabled joint analyses of the methylome, transcriptome, chromatin accessibility, and conformation for 63 human cortical cell types. We reconstructed regulatory lineages for cortical cell populations and found specific enrichment of genetic risk for neuropsychiatric traits, enabling the prediction of cell types that are associated with diseases.

12.
Nature ; 598(7879): 120-128, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616061

RESUMEN

Mammalian brain cells show remarkable diversity in gene expression, anatomy and function, yet the regulatory DNA landscape underlying this extensive heterogeneity is poorly understood. Here we carry out a comprehensive assessment of the epigenomes of mouse brain cell types by applying single-nucleus DNA methylation sequencing1,2 to profile 103,982 nuclei (including 95,815 neurons and 8,167 non-neuronal cells) from 45 regions of the mouse cortex, hippocampus, striatum, pallidum and olfactory areas. We identified 161 cell clusters with distinct spatial locations and projection targets. We constructed taxonomies of these epigenetic types, annotated with signature genes, regulatory elements and transcription factors. These features indicate the potential regulatory landscape supporting the assignment of putative cell types and reveal repetitive usage of regulators in excitatory and inhibitory cells for determining subtypes. The DNA methylation landscape of excitatory neurons in the cortex and hippocampus varied continuously along spatial gradients. Using this deep dataset, we constructed an artificial neural network model that precisely predicts single neuron cell-type identity and brain area spatial location. Integration of high-resolution DNA methylomes with single-nucleus chromatin accessibility data3 enabled prediction of high-confidence enhancer-gene interactions for all identified cell types, which were subsequently validated by cell-type-specific chromatin conformation capture experiments4. By combining multi-omic datasets (DNA methylation, chromatin contacts, and open chromatin) from single nuclei and annotating the regulatory genome of hundreds of cell types in the mouse brain, our DNA methylation atlas establishes the epigenetic basis for neuronal diversity and spatial organization throughout the mouse cerebrum.


Asunto(s)
Encéfalo/citología , Metilación de ADN , Epigenoma , Epigenómica , Neuronas/clasificación , Neuronas/metabolismo , Análisis de la Célula Individual , Animales , Atlas como Asunto , Encéfalo/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Citosina/química , Citosina/metabolismo , Conjuntos de Datos como Asunto , Giro Dentado/citología , Elementos de Facilitación Genéticos/genética , Perfilación de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Vías Nerviosas , Neuronas/citología
13.
Nature ; 598(7879): 103-110, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616066

RESUMEN

Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.


Asunto(s)
Epigenómica , Perfilación de la Expresión Génica , Corteza Motora/citología , Neuronas/clasificación , Análisis de la Célula Individual , Transcriptoma , Animales , Atlas como Asunto , Conjuntos de Datos como Asunto , Epigénesis Genética , Femenino , Masculino , Ratones , Corteza Motora/anatomía & histología , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Reproducibilidad de los Resultados
14.
Nat Biomed Eng ; 5(7): 657-665, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34211145

RESUMEN

Frequent and widespread testing of members of the population who are asymptomatic for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the mitigation of the transmission of the virus. Despite the recent increases in testing capacity, tests based on quantitative polymerase chain reaction (qPCR) assays cannot be easily deployed at the scale required for population-wide screening. Here, we show that next-generation sequencing of pooled samples tagged with sample-specific molecular barcodes enables the testing of thousands of nasal or saliva samples for SARS-CoV-2 RNA in a single run without the need for RNA extraction. The assay, which we named SwabSeq, incorporates a synthetic RNA standard that facilitates end-point quantification and the calling of true negatives, and that reduces the requirements for automation, purification and sample-to-sample normalization. We used SwabSeq to perform 80,000 tests, with an analytical sensitivity and specificity comparable to or better than traditional qPCR tests, in less than two months with turnaround times of less than 24 h. SwabSeq could be rapidly adapted for the detection of other pathogens.


Asunto(s)
ARN Viral/genética , SARS-CoV-2/patogenicidad , Saliva/virología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , SARS-CoV-2/genética , Sensibilidad y Especificidad
15.
Nat Biotechnol ; 39(8): 1000-1007, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33875866

RESUMEN

Integrating large single-cell gene expression, chromatin accessibility and DNA methylation datasets requires general and scalable computational approaches. Here we describe online integrative non-negative matrix factorization (iNMF), an algorithm for integrating large, diverse and continually arriving single-cell datasets. Our approach scales to arbitrarily large numbers of cells using fixed memory, iteratively incorporates new datasets as they are generated and allows many users to simultaneously analyze a single copy of a large dataset by streaming it over the internet. Iterative data addition can also be used to map new data to a reference dataset. Comparisons with previous methods indicate that the improvements in efficiency do not sacrifice dataset alignment and cluster preservation performance. We demonstrate the effectiveness of online iNMF by integrating more than 1 million cells on a standard laptop, integrating large single-cell RNA sequencing and spatial transcriptomic datasets, and iteratively constructing a single-cell multi-omic atlas of the mouse motor cortex.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Aprendizaje Automático , Análisis de la Célula Individual/métodos , Transcriptoma/genética , Animales , Ratones , Análisis Multivariante
16.
Annu Rev Genomics Hum Genet ; 22: 171-197, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-33722077

RESUMEN

Over the past decade, genomic analyses of single cells-the fundamental units of life-have become possible. Single-cell DNA sequencing has shed light on biological questions that were previously inaccessible across diverse fields of research, including somatic mutagenesis, organismal development, genome function, and microbiology. Single-cell DNA sequencing also promises significant future biomedical and clinical impact, spanning oncology, fertility, and beyond. While single-cell approaches that profile RNA and protein have greatly expanded our understanding of cellular diversity, many fundamental questions in biology and important biomedical applications require analysis of the DNA of single cells. Here, we review the applications and biological questions for which single-cell DNA sequencing is uniquely suited or required. We include a discussion of the fields that will be impacted by single-cell DNA sequencing as the technology continues to advance.


Asunto(s)
Genoma , Genómica , ADN , Humanos , ARN , Análisis de Secuencia de ADN
17.
Neuron ; 109(1): 11-26, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33412093

RESUMEN

Single-cell sequencing technologies, including transcriptomic and epigenomic assays, are transforming our understanding of the cellular building blocks of neural circuits. By directly measuring multiple molecular signatures in thousands to millions of individual cells, single-cell sequencing methods can comprehensively characterize the diversity of brain cell types. These measurements uncover gene regulatory mechanisms that shape cellular identity and provide insight into developmental and evolutionary relationships between brain cell populations. Single-cell sequencing data can aid the design of tools for targeted functional studies of brain circuit components, linking molecular signatures with anatomy, connectivity, morphology, and physiology. Here, we discuss the fundamental principles of single-cell transcriptome and epigenome sequencing, integrative computational analysis of the data, and key applications in neuroscience.


Asunto(s)
Encéfalo/metabolismo , Epigenoma/fisiología , Análisis de la Célula Individual/métodos , Transcriptoma/fisiología , Metilación de ADN/fisiología , Epigenómica/métodos , Humanos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos
18.
medRxiv ; 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32909008

RESUMEN

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is due to the high rates of transmission by individuals who are asymptomatic at the time of transmission1,2. Frequent, widespread testing of the asymptomatic population for SARS-CoV-2 is essential to suppress viral transmission. Despite increases in testing capacity, multiple challenges remain in deploying traditional reverse transcription and quantitative PCR (RT-qPCR) tests at the scale required for population screening of asymptomatic individuals. We have developed SwabSeq, a high-throughput testing platform for SARS-CoV-2 that uses next-generation sequencing as a readout. SwabSeq employs sample-specific molecular barcodes to enable thousands of samples to be combined and simultaneously analyzed for the presence or absence of SARS-CoV-2 in a single run. Importantly, SwabSeq incorporates an in vitro RNA standard that mimics the viral amplicon, but can be distinguished by sequencing. This standard allows for end-point rather than quantitative PCR, improves quantitation, reduces requirements for automation and sample-to-sample normalization, enables purification-free detection, and gives better ability to call true negatives. After setting up SwabSeq in a high-complexity CLIA laboratory, we performed more than 80,000 tests for COVID-19 in less than two months, confirming in a real world setting that SwabSeq inexpensively delivers highly sensitive and specific results at scale, with a turn-around of less than 24 hours. Our clinical laboratory uses SwabSeq to test both nasal and saliva samples without RNA extraction, while maintaining analytical sensitivity comparable to or better than traditional RT-qPCR tests. Moving forward, SwabSeq can rapidly scale up testing to mitigate devastating spread of novel pathogens.

19.
Nature ; 583(7818): 752-759, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728242

RESUMEN

Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited1,2. Here, as part of the mouse Encyclopedia of DNA Elements (ENCODE) project, we profiled 168 methylomes from 12 mouse tissues or organs at 9 developmental stages from embryogenesis to adulthood. We identified 1,808,810 genomic regions that showed variations in CG methylation by comparing the methylomes of different tissues or organs from different developmental stages. These DNA elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. During late stages of fetal development, non-CG methylation accumulated within the bodies of key developmental transcription factor genes, coinciding with their transcriptional repression. Integration of genome-wide DNA methylation, histone modification and chromatin accessibility data enabled us to predict 461,141 putative developmental tissue-specific enhancers, the human orthologues of which were enriched for disease-associated genetic variants. These spatiotemporal epigenome maps provide a resource for studies of gene regulation during tissue or organ progression, and a starting point for investigating regulatory elements that are involved in human developmental disorders.


Asunto(s)
Metilación de ADN , Epigenoma , Feto/embriología , Feto/metabolismo , Animales , Animales Recién Nacidos , Cromatina/genética , Cromatina/metabolismo , Enfermedad/genética , Regulación hacia Abajo , Elementos de Facilitación Genéticos/genética , Represión Epigenética , Femenino , Silenciador del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis Espacio-Temporal
20.
Elife ; 92020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32159514

RESUMEN

Methylated cytosine is an effector of epigenetic gene regulation. In the brain, Dnmt3a is the sole 'writer' of atypical non-CpG methylation (mCH), and MeCP2 is the only known 'reader' for mCH. We asked if MeCP2 is the sole reader for Dnmt3a dependent methylation by comparing mice lacking either protein in GABAergic inhibitory neurons. Loss of either protein causes overlapping and distinct features from the behavioral to molecular level. Loss of Dnmt3a causes global loss of mCH and a subset of mCG sites resulting in more widespread transcriptional alterations and severe neurological dysfunction than MeCP2 loss. These data suggest that MeCP2 is responsible for reading only part of the Dnmt3a dependent methylation in the brain. Importantly, the impact of MeCP2 on genes differentially expressed in both models shows a strong dependence on mCH, but not Dnmt3a dependent mCG, consistent with mCH playing a central role in the pathogenesis of Rett Syndrome.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Neuronas GABAérgicas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Femenino , Predisposición Genética a la Enfermedad , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Síndrome de Rett/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA