Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(14)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-39007267

RESUMEN

Emerging evidence has linked the dysregulation of N6-methyladenosine (m6A) modification to inflammation and inflammatory diseases, but the underlying mechanism still needs investigation. Here, we found that high levels of m6A modification in a variety of hyperinflammatory states are p65-dependent because Wilms tumor 1-associated protein (WTAP), a key component of the "writer" complex, is transcriptionally regulated by p65, and its overexpression can lead to increased levels of m6A modification. Mechanistically, upregulated WTAP is more prone to phase separation to facilitate the aggregation of the writer complex to nuclear speckles and the deposition of m6A marks on transcriptionally active inflammatory transcripts, thereby accelerating the proinflammatory response. Further, a myeloid deficiency in WTAP attenuates the severity of LPS-induced sepsis and DSS-induced IBD. Thus, the proinflammatory effect of WTAP is a general risk-increasing mechanism, and interrupting the assembly of the m6A writer complex to reduce the global m6A levels by targeting the phase separation of WTAP may be a potential and promising therapeutic strategy for alleviating hyperinflammation.


Asunto(s)
Adenosina , Inflamación , Animales , Ratones , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Adenosina/metabolismo , Adenosina/análogos & derivados , Humanos , Lipopolisacáridos , Ratones Noqueados , Modelos Animales de Enfermedad , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Sepsis/metabolismo , Sepsis/genética , Sepsis/patología , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Proteínas de Ciclo Celular
2.
Dev Cell ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39047737

RESUMEN

Peroxisome dynamics are crucial for intestinal stem cell (ISC) differentiation and gut regeneration. However, the precise mechanisms that govern peroxisome dynamics within ISCs during gut regeneration remain unknown. Using mouse colitis and Drosophila intestine models, we have identified a negative-feedback control mechanism involving the transcription factors peroxisome proliferator-activated receptors (PPARs) and SOX21. This feedback mechanism effectively regulates peroxisome abundance during gut regeneration. Following gut injury, the released free very long-chain fatty acids (VLCFAs) increase peroxisome abundance by stimulating PPARs-PEX11s signaling. PPARs act to stimulate peroxisome fission and inhibit pexophagy. SOX21, which acts downstream of peroxisomes during ISC differentiation, induces peroxisome elimination through pexophagy while repressing PPAR expression. Hence, PPARs and SOX21 constitute a finely tuned negative-feedback loop that regulates peroxisome dynamics. These findings shed light on the complex molecular mechanisms underlying peroxisome regulation in ISCs, contributing to our understanding of gut renewal and repair.

3.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891830

RESUMEN

The dynamic process of Drosophila spermatogenesis involves asymmetric division, mitosis, and meiosis, which ultimately results in the production of mature spermatozoa. Disorders of spermatogenesis can lead to infertility in males. ADAR (adenosine deaminase acting on RNA) mutations in Drosophila cause male infertility, yet the causative factors remain unclear. In this study, immunofluorescence staining was employed to visualize endogenous ADAR proteins and assess protein levels via fluorescence-intensity analysis. In addition, the early differentiation disorders and homeostatic alterations during early spermatogenesis in the testes were examined through quantification of transit-amplifying region length, counting the number of GSCs (germline stem cells), and fertility experiments. Our findings suggest that deletion of ADAR causes testicular tip transit-amplifying cells to accumulate and become infertile in older male Drosophila. By overexpressing ADAR in early germline cells, male infertility can be partially rescued. Transcriptome analysis showed that ADAR maintained early spermatogenesis homeostasis through the bone-morphogenetic-protein (BMP) signaling pathway. Taken together, these findings have the potential to help explore the role of ADAR in early spermatogenesis.


Asunto(s)
Adenosina Desaminasa , Proteínas Morfogenéticas Óseas , Proteínas de Drosophila , Drosophila melanogaster , Transducción de Señal , Espermatogénesis , Animales , Masculino , Espermatogénesis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Testículo/metabolismo
4.
Aging (Albany NY) ; 16(10): 8585-8598, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38761180

RESUMEN

Despite its prevalence, preeclampsia (PE) remains unclear as to its etiology. Here, we aimed to investigate the mechanisms regulating differences in the gene expression of zinc-finger protein 516 (ZNF516) in the placenta. The expression of the placental ZNF516 gene and its association with critical clinical markers were verified, and a rigorous correlation analysis was conducted. With a dual-luciferase reporter gene assay, microRNA targeting the ZNF516 gene was predicted and confirmed. Finally, the molecular processes associated with ZNF516 were explored via microarray and bioinformatic analyses. In hypoxic conditions, miR-371-5p expression was reduced, resulting in ZNF516 expression being induced. Moreover, ZNF516 was shown to hinder trophoblast cell migration and invasion while enhancing trophoblast cell death in various in vitro cellular assays, such as cell counting kit-8, colony formation, wound healing, and Transwell assays. Our findings reveal a new regulatory network facilitated by ZNF516. ZNF516 overexpression inhibits trophoblast growth, movement, and penetration, potentially causing problems with placenta formation with the help of miR-371-5p suppression.


Asunto(s)
Movimiento Celular , Proliferación Celular , MicroARNs , Preeclampsia , Trofoblastos , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Trofoblastos/metabolismo , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Embarazo , Preeclampsia/genética , Preeclampsia/metabolismo , Preeclampsia/patología , Placenta/metabolismo
5.
Adv Sci (Weinh) ; 11(28): e2307981, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713722

RESUMEN

Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression.


Asunto(s)
Adenosina , Antibacterianos , Ácidos y Sales Biliares , Disbiosis , Microbioma Gastrointestinal , Transcriptoma , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Ácidos y Sales Biliares/metabolismo , Disbiosis/metabolismo , Disbiosis/microbiología , Disbiosis/genética , Ratones , Transcriptoma/genética , Antibacterianos/farmacología , Adenosina/análogos & derivados , Adenosina/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Masculino
6.
J Adv Res ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38782298

RESUMEN

INTRODUCTION: The rapid development of next-generation sequencing (NGS)-based single-cell RNA sequencing (scRNA-seq) allows for detecting and quantifying gene expression in a high-throughput manner, providing a powerful tool for comprehensively understanding cellular function in various biological processes. However, the NGS-based scRNA-seq only quantifies gene expression and cannot reveal the exact transcript structures (isoforms) of each gene due to the limited read length. On the other hand, the long read length of third-generation sequencing (TGS) technologies, including Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio), enable direct reading of intact cDNA molecules. OBJECTIVES: Both ONT and PacBio have been used in conjunction with scRNA-seq, but their performance in single-cell analyses has not been systematically evaluated. METHODS: To address this, we generated ONT and PacBio data from the same single-cell cDNA libraries containing different amount of cells. RESULTS: Using NGS as a control, we assessed the performance of each platform in cell type identification. Additionally, the reliability in identifying novel isoforms and allele-specific gene/isoform expression by both platforms was verified, providing a systematic evaluation to design the sequencing strategies in single-cell transcriptome studies. CONCLUSION: Beyond gene expression analysis, which the NGS-based scRNA-seq only affords, TGS-based scRNA-seq achieved gene splicing analyses, identifying novel isoforms. Attribute to higher sequencing quality of PacBio, it outperforms ONT in accuracy of novel transcripts identification and allele-specific gene/isoform expression.

7.
Nucleic Acids Res ; 52(2): 967-976, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38096062

RESUMEN

Pseudomonas aeruginosa harbors sophisticated transcription factor (TF) networks to coordinately regulate cellular metabolic states for rapidly adapting to changing environments. The extraordinary capacity in fine-tuning the metabolic states enables its success in tolerance to antibiotics and evading host immune defenses. However, the linkage among transcriptional regulation, metabolic states and antibiotic tolerance in P. aeruginosa remains largely unclear. By screening the P. aeruginosa TF mutant library constructed by CRISPR/Cas12k-guided transposase, we identify that rccR (PA5438) is a major genetic determinant in aminoglycoside antibiotic tolerance, the deletion of which substantially enhances bacterial tolerance. We further reveal the inhibitory roles of RccR in pyruvate metabolism (aceE/F) and glyoxylate shunt pathway (aceA and glcB), and overexpression of aceA or glcB enhances bacterial tolerance. Moreover, we identify that 2-keto-3-deoxy-6-phosphogluconate (KDPG) is a signal molecule that directly binds to RccR. Structural analysis of the RccR/KDPG complex reveals the detailed interactions. Substitution of the key residue R152, K270 or R277 with alanine abolishes KDPG sensing by RccR and impairs bacterial growth with glycerol or glucose as the sole carbon source. Collectively, our study unveils the connection between aminoglycoside antibiotic tolerance and RccR-mediated central carbon metabolism regulation in P. aeruginosa, and elucidates the KDPG-sensing mechanism by RccR.


Asunto(s)
Proteínas Bacterianas , Carbono , Pseudomonas aeruginosa , Aminoglicósidos/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Carbono/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/metabolismo , Redes Reguladoras de Genes
9.
Epigenetics Chromatin ; 16(1): 32, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37568210

RESUMEN

BACKGROUND: Cardiomyocyte growth and differentiation rely on precise gene expression regulation, with epigenetic modifications emerging as key players in this intricate process. Among these modifications, N6-methyladenosine (m6A) stands out as one of the most prevalent modifications on mRNA, exerting influence over mRNA metabolism and gene expression. However, the specific function of m6A in cardiomyocyte differentiation remains poorly understood. RESULTS: We investigated the relationship between m6A modification and cardiomyocyte differentiation by conducting a comprehensive profiling of m6A dynamics during the transition from pluripotent stem cells to cardiomyocytes. Our findings reveal that while the overall m6A modification level remains relatively stable, the m6A levels of individual genes undergo significant changes throughout cardiomyocyte differentiation. We discovered the correlation between alterations in chromatin accessibility and the binding capabilities of m6A writers, erasers, and readers. The changes in chromatin accessibility influence the recruitment and activity of m6A regulatory proteins, thereby impacting the levels of m6A modification on specific mRNA transcripts. CONCLUSION: Our data demonstrate that the coordinated dynamics of m6A modification and chromatin accessibility are prominent during the cardiomyocyte differentiation.


Asunto(s)
Cromatina , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo
10.
Nat Commun ; 14(1): 1906, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019930

RESUMEN

N6-methyladenosine (m6A) has been increasingly recognized as a new and important regulator of gene expression. To date, transcriptome-wide m6A detection primarily relies on well-established methods using next-generation sequencing (NGS) platform. However, direct RNA sequencing (DRS) using the Oxford Nanopore Technologies (ONT) platform has recently emerged as a promising alternative method to study m6A. While multiple computational tools are being developed to facilitate the direct detection of nucleotide modifications, little is known about the capabilities and limitations of these tools. Here, we systematically compare ten tools used for mapping m6A from ONT DRS data. We find that most tools present a trade-off between precision and recall, and integrating results from multiple tools greatly improve performance. Using a negative control could improve precision by subtracting certain intrinsic bias. We also observed variation in detection capabilities and quantitative information among motifs, and identified sequencing depth and m6A stoichiometry as potential factors affecting performance. Our study provides insight into the computational tools currently used for mapping m6A based on ONT DRS data and highlights the potential for further improving these tools, which may serve as the basis for future research.


Asunto(s)
Nanoporos , ARN , ARN/genética , Transcriptoma , Adenosina/metabolismo , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
12.
Cell Prolif ; 56(8): e13410, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36722312

RESUMEN

Muscle stem cells are required for the homeostasis and regeneration of mammalian skeletal muscles. It has been reported that RNA N6-methyladenosine (m6A) modifications play a pivotal role in muscle development and regeneration. Nevertheless, we know little about which m6A reader regulates mammalian muscle stem cells. Here, we discovered that the m6A reader Ythdc1 is indispensable for mouse skeletal muscle regeneration and proliferation of muscle stem cells. In the absence of Ythdc1, Muscle stem cells in adult mice are unable to exit from quiescence. Mechanistically, Ythdc1 binds to m6A-modified Pi4k2a and Pi4kb mRNAs to regulate their alternative splicing and thus PI4K-Akt-mTOR signalling. Ythdc1-null muscle stem cells show a deficiency in phosphatidylinositol (PI) 3,4,5-trisphosphate, phospho-Akt and phospho-S6, which correlates with a failure in exit from quiescence. Our findings connect dynamic RNA methylation to the regulation of PI4K-Akt-mTOR signalling during stem cell proliferation and adult tissue regeneration.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Proliferación Celular , Músculos/metabolismo , Mamíferos/metabolismo
13.
Nat Commun ; 13(1): 7441, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460653

RESUMEN

N6-methyladenosine (m6A) modification of mRNAs affects many biological processes. However, the function of m6A in plant photosynthesis remains unknown. Here, we demonstrate that m6A modification is crucial for photosynthesis during photodamage caused by high light stress in plants. The m6A modification levels of numerous photosynthesis-related transcripts are changed after high light stress. We determine that the Arabidopsis m6A writer VIRILIZER (VIR) positively regulates photosynthesis, as its genetic inactivation drastically lowers photosynthetic activity and photosystem protein abundance under high light conditions. The m6A levels of numerous photosynthesis-related transcripts decrease in vir mutants, extensively reducing their transcript and translation levels, as revealed by multi-omics analyses. We demonstrate that VIR associates with the transcripts of genes encoding proteins with functions related to photoprotection (such as HHL1, MPH1, and STN8) and their regulatory proteins (such as regulators of transcript stability and translation), promoting their m6A modification and maintaining their stability and translation efficiency. This study thus reveals an important mechanism for m6A-dependent maintenance of photosynthetic efficiency in plants under high light stress conditions.


Asunto(s)
Arabidopsis , Fotosíntesis , Fotosíntesis/genética , Arabidopsis/genética , Silenciador del Gen , ARN Mensajero/genética
14.
Cell Discov ; 8(1): 138, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575183

RESUMEN

N6-deoxyadenosine methylation (6mA) is the most widespread type of DNA modification in prokaryotes and is also abundantly distributed in some unicellular eukaryotes. However, 6mA levels are remarkably low in mammals. The lack of a precise and comprehensive mapping method has hindered more advanced investigations of 6mA. Here, we report a new method MM-seq (modification-induced mismatch sequencing) for genome-wide 6mA mapping based on a novel detection principle. We found that modified DNA bases are prone to form a local open region that allows capture by antibody, for example, via a DNA breathing or base-flipping mechanism. Specified endonuclease or exonuclease can recognize the antibody-stabilized mismatch-like structure and mark the exact modified sites for sequencing readout. Using this method, we examined the genomic positions of 6mA in bacteria (E. coli), green algae (C. reinhardtii), and mammalian cells (HEK239T, Huh7, and HeLa cells). In contrast to bacteria and green algae, human cells possess a very limited number of 6mA sites which are sporadically distributed across the genome of different cell types. After knocking out the RNA m6A methyltransferase METTL3 in mouse ES cells, 6mA becomes mostly diminished. Our results imply that rare 6mA in the mammalian genome is introduced by RNA m6A machinery via a non-targeted mechanism.

15.
Adv Sci (Weinh) ; 9(30): e2203388, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36055796

RESUMEN

Coronavirus disease 2019 continues to spread worldwide. Given the urgent need for effective treatments, many clinical trials are ongoing through repurposing approved drugs. However, clinical data regarding the cardiotoxicity of these drugs are limited. Human pluripotent stem cell-derived cardiomyocytes (hCMs) represent a powerful tool for assessing drug-induced cardiotoxicity. Here, by using hCMs, it is demonstrated that four antiviral drugs, namely, apilimod, remdesivir, ritonavir, and lopinavir, exhibit cardiotoxicity in terms of inducing cell death, sarcomere disarray, and dysregulation of calcium handling and contraction, at clinically relevant concentrations. Human engineered heart tissue (hEHT) model is used to further evaluate the cardiotoxic effects of these drugs and it is found that they weaken hEHT contractile function. RNA-seq analysis reveals that the expression of genes that regulate cardiomyocyte function, such as sarcomere organization (TNNT2, MYH6) and ion homeostasis (ATP2A2, HCN4), is significantly altered after drug treatments. Using high-throughput screening of approved drugs, it is found that ceftiofur hydrochloride, astaxanthin, and quetiapine fumarate can ameliorate the cardiotoxicity of remdesivir, with astaxanthin being the most prominent one. These results warrant caution and careful monitoring when prescribing these therapies in patients and provide drug candidates to limit remdesivir-induced cardiotoxicity.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Calcio/metabolismo , Lopinavir/metabolismo , Lopinavir/farmacología , Ritonavir/metabolismo , Ritonavir/farmacología , Fumarato de Quetiapina/metabolismo , Fumarato de Quetiapina/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Células Madre Pluripotentes/metabolismo , Antivirales/efectos adversos
16.
Methods ; 203: 392-398, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34174388

RESUMEN

The past few years have witnessed rapid progress in the field of RNA modifications. As the most prevailing modification on eukaryotic mRNA, m6A is characterized to play a vital role in various cellular activities. However, limitations of the detection method impede functional studies of m6A. Here we introduce m6A-REF-seq, a powerful and straightforward method to identify m6A at single-nucleotide resolution. m6A-REF-seq relies on the recognition of RNA endonuclease MazF towards m6A at the ACA motif, providing an orthogonal method independent of the m6A antibody being adopted by most of current methods. We describe a detailed protocol to perform m6A-REF-seq, including NGS library construction and sequencing data analysis. In particular, we describe an optimized assay to validate individual m6A sites identified by m6A-REF-seq, which can also be applied to detect any candidate m6A sites.


Asunto(s)
Adenosina/análogos & derivados , Nucleótidos , ARN , Análisis de Secuencia de ARN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos
17.
Nat Methods ; 18(10): 1213-1222, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34594034

RESUMEN

Recent years have witnessed rapid progress in the field of epitranscriptomics. Functional interpretation of the epitranscriptome relies on sequencing technologies that determine the location and stoichiometry of various RNA modifications. However, contradictory results have been reported among studies, bringing the biological impacts of certain RNA modifications into doubt. Here, we develop a synthetic RNA library resembling the endogenous transcriptome but without any RNA modification. By incorporating this modification-free RNA library into established mapping techniques as a negative control, we reveal abundant false positives resulting from sequence bias or RNA structure. After calibration, precise and quantitative mapping expands the understanding of two representative modification types, N6-methyladenosine (m6A) and 5-methylcytosine (m5C). We propose that this approach provides a systematic solution for the calibration of various RNA-modification mappings and holds great promise in epitranscriptomic studies.


Asunto(s)
Epigénesis Genética , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/genética , Transcriptoma , Calibración , Regulación de la Expresión Génica , Células HeLa , Humanos
19.
Cell Rep ; 36(9): 109635, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34469724

RESUMEN

Microbes employ sophisticated cellular networks encoded by complex genomes to rapidly adapt to changing environments. High-throughput genome engineering methods are valuable tools for functionally profiling genotype-phenotype relationships and understanding the complexity of cellular networks. However, current methods either rely on special homologous recombination systems and are thus applicable in only limited bacterial species or can generate only nonspecific mutations and thus require extensive subsequent screening. Here, we report a site-specific transposon-assisted genome engineering (STAGE) method that allows high-throughput Cas12k-guided mutagenesis in various microorganisms, such as Pseudomonas aeruginosa and Klebsiella pneumoniae. Exploiting the powerful STAGE technique, we construct a site-specific transposon mutant library that focuses on all possible transcription factors (TFs) in P. aeruginosa, enabling the comprehensive identification of essential genes and antibiotic-resistance-related factors. Given its broad host range activity and easy programmability, this method can be widely adapted to diverse microbial species for rapid genome engineering and strain evolution.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Farmacorresistencia Bacteriana/genética , Edición Génica , Klebsiella pneumoniae/genética , Pseudomonas aeruginosa/genética , Factores de Transcripción/genética , Transposasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Regulación Bacteriana de la Expresión Génica , Biblioteca de Genes , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Klebsiella pneumoniae/enzimología , Mutagénesis , Mutación , Pseudomonas aeruginosa/enzimología , Factores de Transcripción/metabolismo , Transposasas/genética
20.
Metabolites ; 11(5)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066348

RESUMEN

The host microbiome plays an important role in regulating physiology through microbiota-derived metabolites during host-microbiome interactions. However, molecular mechanism underly host-microbiome interactions remains to be explored. In this study, we used Drosophila as the model to investigate the influence of microbiome and microbiota-derived metabolite sodium butyrate on host transcriptome and metabolome. We established both a sterile Drosophila model and a conventional Drosophila model to demonstrate the role of sodium butyrate. Using multi-omics analysis, we found that microbiome and sodium butyrate could impact host gene expression patterns in both the sterile Drosophila model and the conventional Drosophila model. The analysis of gut microbial using 16S rRNA sequencing showed sodium butyrate treatment also influenced Drosophila bacterial structures. In addition, Drosophila metabolites identified by ultra-high performance liquid chromatography-MS/MS were shown to be affected by sodium butyrate treatment with lipids as the dominant changed components. Our integrative analysis of the transcriptome, the microbiome, and the metabolome data identified candidate transcripts that are coregulated by sodium butyrate. Taken together, our results reveal the impact of the microbiome and microbiota-derived sodium butyrate on host transcriptome and metabolome, and our work provides a better understanding of host-microbiome interactions at the molecular level with multi-omics data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...