Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Diabetes Metab Syndr Obes ; 17: 3657-3666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39386037

RESUMEN

Aim: This study aimed to conduct a retrospective observational study in China to investigate the real-world utilization of glucagon-like peptide-1 receptor (GLP-1RA) in China. Methods: Type 2 diabetes mellitus (T2DM) patients were retrieved from the electronic medical records of 18 hospitals from 2016 to 2020. A descriptive analysis detailed patient characteristics and clinical outcomes. Multivariate logistic regression analysed the factors associated with daily and weekly GLP-1RA. Results: Fifteen thousand one hundred and seventy-six individuals were included. At the 6-month follow-up, the overall estimated mean change from baseline in HbA1c was -1.26±1.91% (p < 0.001), the "Weekly GLP-1RA" group was -1.58±2.03% (p < 0.001), and the "Daily GLP-1RA" group was -1.25±1.90% (p < 0.001). At the 12-month follow-up, the overall estimated mean change from baseline in HbA1c was -0.95±1.80% (p < 0.001), the "Weekly GLP-1RA" group was -1.05±1.93% (p < 0.001), and the "Daily GLP-1RA" group was -0.95±1.80% (p < 0.001). At 6 months following GLP-1RA initiation, there were statistically significant improvements in the mean TC, LDL-C, and TG at 6 months or 12 months separately following GLP-1RA initiation. Statistically significant improvements were observed in the mean HDL-C after 6 months. Compared with the baseline (11.92%), the proportion of patients who had an incidence of all hypoglycemia was lower at the 6-month follow-up (9.73%). Patients with dyslipidemia were more likely to use weekly GLP-1RA (OR =1.61, 95% CI: 1.27-2.06, p < 0.001). Conclusion: In China, weekly GLP-1RA demonstrated better effectiveness compared to the daily GLP-1RA. The results confirmed the efficacy of GLP-1RA in clinical trials.

2.
Toxicol Lett ; 401: 150-157, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395681

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) exposure is associated with cardiovascular diseases. Toxic effects of PAHs are diverse, while cardiovascular consequences of benzo[b]fluoranthene (B[b]F) are unclear. Here, we reported the impacts of B[b]F on coronary artery and atherosclerosis markers both in mice and umbilical vein endothelial EAhy.926 cells. In mice, we found that B[b]F decreases heart-to-body weight ratio, affects aortic physiology, elevates serum low-density lipoprotein and total cholesterol, increases aortic levels of collagen fiber and atherosclerotic marker vascular cell adhesion molecule-1 (VCAM-1), and downregulates oxidative stress related nuclear factor erythroid 2-related factor 2 (Nrf2). In EAhy.926 cells, we showed that B[b]F inhibits cell proliferation and migration in a dose-dependent manner, induces cell cycle arrest and apoptosis, increases reactive oxygen species, upregulates VCAM-1 level, and suppresses expression of Nrf2. Taken together, our findings reveal that B[b]F exposure may contribute to coronary artery damage and potentially induce atherosclerosis, possibly via the Nrf2-related signaling pathways.

3.
Int J Nanomedicine ; 19: 8309-8336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161358

RESUMEN

Purpose: The treatment of craniofacial bone defects caused by trauma, tumors, and infectious and degenerative diseases is a significant issue in current clinical practice. Following the rapid development of bone tissue engineering (BTE) in the last decade, bioactive scaffolds coupled with multifunctional properties are in high demand with regard to effective therapy for bone defects. Herein, an innovative bone scaffold consisting of GO/Cu nanoderivatives and GelMA-based organic-inorganic hybrids was reported for repairing full-thickness calvarial bone defect. Methods: In this study, motivated by the versatile biological functions of nanomaterials and synthetic hydrogels, copper nanoparticle (CuNP)-decorated graphene oxide (GO) nanosheets (GO/Cu) were combined with methacrylated gelatin (GelMA)-based organic-inorganic hybrids to construct porous bone scaffolds that mimic the extracellular matrix (ECM) of bone tissues by photocrosslinking. The material characterizations, in vitro cytocompatibility, macrophage polarization and osteogenesis of the biohybrid hydrogel scaffolds were investigated, and two different animal models (BALB/c mice and SD rats) were established to further confirm the in vivo neovascularization, macrophage recruitment, biocompatibility, biosafety and bone regenerative potential. Results: We found that GO/Cu-functionalized GelMA/ß-TCP hydrogel scaffolds exhibited evidently promoted osteogenic activities, M2 type macrophage polarization, increased secretion of anti-inflammatory factors and excellent cytocompatibility, with favorable surface characteristics and sustainable release of Cu2+. Additionally, improved neovascularization, macrophage recruitment and tissue integration were found in mice implanted with the bioactive hydrogels. More importantly, the observations of microCT reconstruction and histological analysis in a calvarial bone defect model in rats treated with GO/Cu-incorporated hydrogel scaffolds demonstrated significantly increased bone morphometric values and newly formed bone tissues, indicating accelerated bone healing. Conclusion: Taken together, this BTE-based bone repair strategy provides a promising and feasible method for constructing multifunctional GO/Cu nanocomposite-incorporated biohybrid hydrogel scaffolds with facilitated osteogenesis, angiogenesis and immunoregulation in one system, with the optimization of material properties and biosafety, it thereby demonstrates great application potential for correcting craniofacial bone defects in future clinical scenarios.


Asunto(s)
Regeneración Ósea , Cobre , Grafito , Hidrogeles , Ratas Sprague-Dawley , Cráneo , Ingeniería de Tejidos , Andamios del Tejido , Animales , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Cobre/química , Cobre/farmacología , Grafito/química , Hidrogeles/química , Hidrogeles/farmacología , Cráneo/efectos de los fármacos , Cráneo/lesiones , Ratas , Ratones , Ingeniería de Tejidos/métodos , Osteogénesis/efectos de los fármacos , Ratones Endogámicos BALB C , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Masculino , Nanopartículas del Metal/química , Nanoestructuras/química , Gelatina/química , Células RAW 264.7
4.
Nat Commun ; 15(1): 6625, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103339

RESUMEN

The trade-off between electrostrain and strain hysteresis for piezo/ferroelectric materials largely restrains the development of high precision actuators and remains unresolved over the past few decades. Here, a simple composition of (Bi0.5Na0.5)1-x/100Srx/100TiO3 in the ergodic relaxor state is collaboratively designed through the segregated domain structure with the ferroelectric core, local polarization heterogeneity, and defect engineering. The ferroelectric core can act as a seed to facilitate the field-induced nonpolar-to-polar transition. Together with the internal bias field caused by defect dipoles and adjusted through electric field cycling and heat treatment technology, a giant unipolar strain of 1.03% is achieved in the x = 30 ceramic with a low hysteresis of 27%, while the electric-field-independent large-signal piezoelectric strain coefficient of ~1000 pm/V and ultralow hysteresis of <10% can be obtained in the x = 35 ceramic. Intriguingly, the low-hysteresis high strain also exhibits near-zero remnant strain, excellent temperature and cycling stability.

5.
Adv Sci (Weinh) ; 11(36): e2403362, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39073303

RESUMEN

In recent years, negative pressure wound dressings have garnered widespread attentions. However, it is challenging to drain the accumulated fluid under negative pressures for hydrogel dressings. To address this issue, this study prepared a chemical/physical duel-network PEG-CMCS/AG/MXene hydrogel composed by chemical disulfide crosslinked network of four-arm polyethylene glycol/carboxymethyl chitosan (4-Arm-PEG-SH/CMCS), and the physical network of hydrogen bond of agar (AG). Under near-infrared light (NIR) irradiation, the PEG-CMCS/AG/MXene hydrogel undergoes photothermal heating due to integrate of MXene, which destructs the hydrogen bond network and allows the removal of exudate through a mechanism mimicking the sweat gland-like effect of skin pores. The photothermal heating effect also enables the antimicrobial activity to prevent wound infections. The excellent electrical conductivity of PEG-CMCS/AG/MXene can promote cell proliferation under the external electrical stimulation (ES) in vitro. The animal experiments of full-thickness skin defect model further demonstrate its ability to accelerate wound healing. The conversion between thioester and thiol achieved with L-cysteine methyl ester hydrochloride (L-CME) can provides the on-demand dissolution of the dressing in situ. This study holds promises to provide a novel solution to the issue of fluid accumulations under hydrogel dressings and offers new approaches to alleviating or avoiding the significant secondary injuries caused by frequent dressing changes.


Asunto(s)
Vendajes , Exudados y Transudados , Hidrogeles , Cicatrización de Heridas , Animales , Hidrogeles/química , Hidrogeles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Polietilenglicoles/química , Modelos Animales de Enfermedad , Ratones , Piel/efectos de los fármacos , Quitosano/química , Quitosano/análogos & derivados , Terapia Fototérmica/métodos
6.
Heliyon ; 10(13): e33870, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39050475

RESUMEN

The impact of government behavior under a fiscal decentralization system on the interplay between the digital economy and both the quality and efficiency of green innovation poses an intriguing question. To address this, the present study employs two-way fixed-effects models, instrumental variables, and spatial econometric techniques, using data from 30 provinces and cities in China spanning 2004 to 2019. The findings reveal that the advancement of the digital economy significantly enhances the quality and efficiency of green innovation. In the context of China's fiscal decentralization, local governments frequently employ a "race to the top" strategy, amplifying the digital economy's beneficial impact on green innovation. This effect is particularly pronounced in economically prosperous regions that prioritize environmental assessments. Additionally, the study identifies a spatial demonstration effect, indicating that fiscal decentralization bolsters the digital economy's influence in adjacent regions. Consequently, policy recommendations include deepening the digital economy, advocating for increased fiscal autonomy for local governments, refining the performance appraisal systems for local officials, and establishing a well-calibrated environmental transfer mechanism. Further, leveraging the positive spatial correlations among local governments can foster a competitive yet collaborative landscape for green innovation.

7.
Materials (Basel) ; 17(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063916

RESUMEN

Electrostatic capacitors, with the advantages of high-power density, fast charging-discharging, and outstanding cyclic stability, have become important energy storage devices for modern power electronics. However, the insulation performance of the dielectrics in capacitors will significantly deteriorate under the conditions of high temperatures and electric fields, resulting in limited capacitive performance. In this paper, we report a method to improve the high-temperature energy storage performance of a polymer dielectric for capacitors by incorporating an extremely low loading of 0.5 wt% carbon quantum dots (CQDs) into a fluorene polyester (FPE) polymer. CQDs possess a high electron affinity energy, enabling them to capture migrating carriers and exhibit a unique Coulomb-blocking effect to scatter electrons, thereby restricting electron migration. As a result, the breakdown strength and energy storage properties of the CQD/FPE nanocomposites are significantly enhanced. For instance, the energy density of 0.5 wt% CQD/FPE nanocomposites at room temperature, with an efficiency (η) exceeding 90%, reached 9.6 J/cm3. At the discharge energy density of 0.5 wt%, the CQD/FPE nanocomposites remained at 4.53 J/cm3 with an efficiency (η) exceeding 90% at 150 °C, which surpasses lots of reported results.

8.
Cancer Lett ; 598: 217102, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38969157

RESUMEN

Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. Hypoxia-activated prodrugs (HAPs) have shown promise as potential therapeutic agents for TNBC. While increasing hypoxia levels may promote the HAP activation, it raises concerns regarding HIF1α-dependent drug resistance. It is desirable to develop a targeted approach that enhances tumor hypoxia for HAP activation without promoting HIF1α-dependent drug resistance in TNBC treatment. Herein, we proposed a multi-responsive carrier-free self-assembled nanomedicine named AQ4N@CA4T1ASO. This nanomedicine first targeted tumors by the TNBC-targeting aptamers (T1), and then disassembled in the reductive and acidic conditions within tumors. The released Combretastatin 4 (CA4) could exacerbate hypoxia, thereby promoting the conversion of inactive Banoxantrone (AQ4N) to its active form, AQ4. Simultaneously, the released antisense oligonucleotide (ASO) could attenuate hypoxia-induced HIF1α mRNA expression, thereby sensitizing the tumor to chemotherapy. Overall, this smart nanomedicine represents a profound targeted therapy strategy, combining "hypoxia-potentiating, hypoxia-activated, chemo-sensitization" approaches for TNBC treatment. In vivo study demonstrated significant suppression of tumor growth, highlighting the promising potential of this nanomedicine for future clinical translation.


Asunto(s)
Aptámeros de Nucleótidos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Profármacos , Neoplasias de la Mama Triple Negativas , Profármacos/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Humanos , Aptámeros de Nucleótidos/farmacología , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Ratones , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Ratones Endogámicos BALB C , Antraquinonas
9.
Nat Commun ; 15(1): 5647, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969653

RESUMEN

Direct reduction of unactivated alkyl halides for C(sp3)-N couplings under mild conditions presents a significant challenge in organic synthesis due to their low reduction potential. Herein, we introduce an in situ formed pyridyl-carbene-ligated copper (I) catalyst that is capable of abstracting halide atom and generating alkyl radicals for general C(sp3)-N couplings under visible light. Control experiments confirmed that the mono-pyridyl-carbene-ligated copper complex is the active species responsible for catalysis. Mechanistic investigations using transient absorption spectroscopy across multiple decades of timescales revealed ultrafast intersystem crossing (260 ps) of the photoexcited copper (I) complexes into their long-lived triplet excited states (>2 µs). The non-Stern-Volmer quenching dynamics of the triplets by unactivated alkyl halides suggests an association between copper (I) complexes and alkyl halides, thereby facilitating the abstraction of halide atoms via inner-sphere single electron transfer (SET), rather than outer-sphere SET, for the formation of alkyl radicals for subsequent cross couplings.

10.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731911

RESUMEN

In drug discovery, selecting targeted molecules is crucial as the target could directly affect drug efficacy and the treatment outcomes. As a member of the CCN family, CTGF (also known as CCN2) is an essential regulator in the progression of various diseases, including fibrosis, cancer, neurological disorders, and eye diseases. Understanding the regulatory mechanisms of CTGF in different diseases may contribute to the discovery of novel drug candidates. Summarizing the CTGF-targeting and -inhibitory drugs is also beneficial for the analysis of the efficacy, applications, and limitations of these drugs in different disease models. Therefore, we reviewed the CTGF structure, the regulatory mechanisms in various diseases, and drug development in order to provide more references for future drug discovery.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo , Descubrimiento de Drogas , Humanos , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Descubrimiento de Drogas/métodos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Oftalmopatías/tratamiento farmacológico , Oftalmopatías/metabolismo , Fibrosis , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos
11.
Mol Ther Nucleic Acids ; 35(1): 102146, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38444701

RESUMEN

Osteogenesis imperfecta (OI) is a rare genetic disease characterized by bone fragility and bone formation. Sclerostin could negatively regulate bone formation by antagonizing the Wnt signal pathway, whereas it imposes severe cardiac ischemic events in clinic. Our team has screened an aptamer that could promote bone anabolic potential without cardiovascular risk. However, the affinity of the aptamer is lower and needs to be improved. In the study, hydrophobic quinoline molecule with unique orientations (seven subtypes) were incorporated into key sites of a bone anabolic aptamer against sclerostin to form a modified aptamer library. Among all the quinoline modifications, 5-quinoline modification could shape the molecular recognition of modified aptamers to sclerostin to facilitate enhancing its binding to sclerostin toward the highest affinity by interacting with newly participated binding sites in sclerostin. Further, 5-quinoline modification could facilitate the modified aptamer attenuating the suppressed effect of the transfected sclerostin on both Wnt signaling and bone formation marker expression levels in vitro, promoting bone anabolism in OI mice (Col1a2+/G610C). The proposed quinoline-oriented modification strategy could shape the molecular recognition of modified aptamers to proteins to facilitate enhancing its binding affinity and therapeutic potency.

12.
Nano Lett ; 24(13): 3937-3944, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526847

RESUMEN

Integrating high-κ dielectrics with a small equivalent oxide thickness (EOT) with two-dimensional (2D) semiconductors for low-power consumption van der Waals (vdW) heterostructure electronics remains challenging in meeting both interface quality and dielectric property requirements. Here, we demonstrate the integration of ultrathin amorphous HfOx sandwiched within vdW heterostructures by the selective thermal oxidation of HfSe2 precursors. The self-cleaning process ensures a high-quality interface with a low interface state density of 1011-1012 cm-2 eV-1. The synthesized HfOx displays excellent dielectric properties with an EOT of ∼1.5 nm, i.e., a high κ of ∼16, an ultralow leakage current of 10-6 A/cm2, and an impressively high breakdown field of 9.5 MV/cm. This facilitates low-power consumption vdW heterostructure MoS2 transistors, demonstrating steep switching with a low subthreshold swing of 61 mV/decade. This one-step integration of high-κ dielectrics into vdW sandwich heterostructures holds immense potential for developing low-power consumption 2D electronics while meeting comprehensive dielectric requirements.

13.
Diabetes Obes Metab ; 26(4): 1443-1453, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240050

RESUMEN

AIM: To assess the sex- and time-specific causal effects of obesity-related anthropometric traits on glycaemic traits. MATERIALS AND METHODS: We used univariate and multivariate Mendelian randomization to assess the causal associations of anthropometric traits (gestational variables, birth weight, childhood body mass index [BMI], BMI, waist-to-hip ratio [WHR], BMI-adjusted WHR [WHRadj BMI]) with fasting glucose and insulin in Europeans from the Early Growth Genetics Consortium (n ≤ 298 142), the UK Biobank, the Genetic Investigation of Anthropometric Traits Consortium (n ≤ 697 734; females: n ≤ 434 794; males: n ≤ 374 754) and the Meta-Analyses of Glucose and Insulin-related traits Consortium (n ≤ 151 188; females: n ≤ 73 089; males: n ≤ 67 506), adjusting for maternal genetic effects, smoking, alcohol consumption, and age at menarche. RESULTS: We observed a null association for gestational variables, a negative association for birth weight, and positive associations for childhood BMI and adult traits (BMI, WHR, and WHRadj BMI). In female participants, increased birth weight causally decreased fasting insulin (betaIVW , -0.07, 95% confidence interval [CI] -0.11 to -0.03; p = 1.92 × 10-3 ), but not glucose levels, which was annulled by adjusting for age at menarche. In male participants, increased birth weight causally decreased fasting glucose (betainverse-variance-weighted (IVW) , -0.07, 95% CI -0.11 to -0.03; p = 3.22 × 10-4 ), but not insulin levels. In time-specific analyses, independent effects of birth weight were absent in female participants, and were more pronounced in male participants. Independent effects of childhood BMI were attenuated in both sexes; independent effects of adult traits differed by sex. CONCLUSIONS: Our findings provide evidence for causal and independent effects of sex- and time-specific anthropometric traits on glycaemic variables, and highlight the importance of considering multiple obesity exposures at different time points in the life course.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Obesidad , Adulto , Humanos , Masculino , Femenino , Peso al Nacer/genética , Obesidad/epidemiología , Obesidad/genética , Obesidad/complicaciones , Índice de Masa Corporal , Insulina/genética , Glucosa , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
14.
Nano Lett ; 24(3): 975-982, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38189647

RESUMEN

Ferroelectric memristors hold immense promise for advanced memory and neuromorphic computing. However, they face limitations due to low readout current density in conventional designs with low-conductive ferroelectric channels, especially at the nanoscale. Here, we report a ferroelectric-mediated memristor utilizing a 2D MoS2 nanoribbon channel with an ultrascaled cross-sectional area of <1000 nm2, defined by a ferroelectric BaTiO3 nanoribbon stacked on top. Strikingly, the Schottky barrier at the MoS2 contact can be effectively tuned by the charge transfers coupled with quasi-zero-dimensional polarization charges formed at the two ends of the nanoribbon, which results in distinctive resistance switching accompanied by multiple negative differential resistance showing the high-current density of >104 A/cm2. The associated space charges in BaTiO3 are minimized to ∼3.7% of the polarization charges, preserving nonvolatile polarization. This achievement establishes ferroelectric-mediated nanoscale semiconductor memristors with high readout current density as promising candidates for memory and highly energy-efficient in-memory computing applications.

15.
Small ; 20(5): e2306428, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759404

RESUMEN

Silicon (Si) is considered a promising commercial material for the next-generation of high-energy density lithium-ion battery (LIB) due to its high theoretical capacity. However, the severe volume changes and the poor conductivity hinder the practical application of Si anode. Herein, a novel core-shell heterostructure, Si as the core and V3 O4 @C as the shell (Si@V3 O4 @C), is proposed by a facile solvothermal reaction. Theoretical simulations have shown that the in-situ-formed V3 O4 layer facilitates the rapid Li+ diffusion and lowers the energy barrier of Li transport from the carbon shell to the inner core. The 3D network structure constructed by amorphous carbon can effectively improve electronic conductivity and structural stability. Benefiting from the rationally designed structure, the optimized Si@V3 O4 @C electrode exhibits an excellent cycling stability of 1061.1 mAh g-1 at 0.5 A g-1 over 700 cycles (capacity retention of 70.0%) with an average Coulombic efficiency of 99.3%. In addition, the Si@V3 O4 @C||LiFePO4 full cell shows a superior capacity retention of 78.7% after 130 cycles at 0.5 C. This study opens a novel way for designing high-performance silicon anode for advanced LIBs.

16.
J Affect Disord ; 348: 152-159, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38158048

RESUMEN

BACKGROUND: Depression is associated with both environmental tobacco smoke (ETS) and inflammation. However, whether systemic inflammation mediates the ETS-depression relationship is unclear. METHODS: We analyzed 19,612 participants from the 2009-2018 National Health and Nutrition Examination Survey (representing approximately 206,284,711 USA individuals), utilizing data of depressive symptoms (assessed by Patient Health Questionnaire-9), blood cotinine level (an ETS biomarker), dietary inflammatory index (DII, assessed by 24-h dietary recall) and inflammation, represented by immune-inflammation index (SII) and systemic inflammation response index (SIRI). RESULTS: Weighted multivariable logistic regression showed that a higher blood cotinine level is significantly associated with a higher depressive symptoms risk (OR = 1.79, 1.35-2.38). After adjusting for covariates, the effect in smokers (OR = 1.220, 95 % CI: 1.140-1.309) is larger than that in non-smokers (OR = 1.150, 95 % CI: 1.009-1.318). Compared to the lowest level, depressive symptoms risks in participants with the highest level of SII, SIRI and DII are 19 % (OR = 1.19, 1.05-1.35), 15 % (OR = 1.15, 1.01-1.31) and 88 % (OR = 1.88, 1.48-2.39) higher, respectively. Weighted linear regression demonstrated positive correlations of SII (ß = 0.004, 0.001-0.006), SIRI (ß = 0.009, 0.005-0.012) and DII (ß = 0.213, 0.187-0.240) with blood cotinine level. Restricted cubic splines model showed a linear dose-response relationship between blood cotinine and depressive symptoms (Pnon-linear = 0.410), with decreasing risk for lower DII. And SII and SIRI respectively mediate 0.21 % and 0.1 % of the association between blood cotinine and depressive symptoms. LIMITATION: Cross-sectional design, and lack of medication data for depression. CONCLUSIONS: Positive association of ETS (blood cotinine) with depressive symptoms risk is partly mediated by systemic inflammation, and anti-inflammatory diet could be beneficial.


Asunto(s)
Contaminación por Humo de Tabaco , Humanos , Contaminación por Humo de Tabaco/efectos adversos , Encuestas Nutricionales , Estudios Transversales , Depresión/epidemiología , Cotinina/análisis , Inflamación/epidemiología
17.
Small ; 20(22): e2306034, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38126675

RESUMEN

It is a huge challenge to explore how charge traps affect the electric breakdown of polymer-based dielectric composites. In this paper, alkane and aromatic molecules with different substituents are investigated according to DFT theoretical method. The combination of strong electron-withdrawing groups and aromatic rings can establish high electron affinity molecules. 4'-Nitro-4-dimethylaminoazobenzene (NAABZ) with a vertical electron affinity of 1.39 eV and a dipole moment of 10.15 D is introduced into polystyrene (PSt) to analyze the influence of charge traps on electric properties. Marcus charge transfer theory is applied to calculate the charge transfer rate between PSt and NAABZ. The nature of charge traps is elaborated from a dynamic perspective. The enhanced breakdown mechanism of polymers-based composites stems from the constraint of carrier mobility caused by the change in transfer rate. But the electrophile nature of high electron affinity filler can decrease the potential barriers at the metal-polymer interface. Simultaneously, the relationship between the electron affinity of fillers and the breakdown strength of polymer-based composites is nonlinear because of the presence of the inversion region. Based on the deep understanding of the molecular trap, this work provides the theoretical calculation for the design and development of high-performance polymer dielectrics.

18.
J Imaging ; 9(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37998098

RESUMEN

To digital grade the staining color fastness of fabrics after rubbing, an automatic grading method based on spectral reconstruction technology and BP neural network was proposed. Firstly, the modeling samples are prepared by rubbing the fabrics according to the ISO standard of 105-X12. Then, to comply with visual rating standards for color fastness, the modeling samples are professionally graded to obtain the visual rating result. After that, a digital camera is used to capture digital images of the modeling samples inside a closed and uniform lighting box, and the color data values of the modeling samples are obtained through spectral reconstruction technology. Finally, the color fastness prediction model for rubbing was constructed using the modeling samples data and BP neural network. The color fastness level of the testing samples was predicted using the prediction model, and the prediction results were compared with the existing color difference conversion method and gray scale difference method based on the five-fold cross-validation strategy. Experiments show that the prediction model of fabric color fastness can be better constructed using the BP neural network. The overall performance of the method is better than the color difference conversion method and the gray scale difference method. It can be seen that the digital rating method of fabric staining color fastness to rubbing based on spectral reconstruction and BP neural network has high consistency with the visual evaluation, which will help for the automatic color fastness grading.

19.
Biomater Res ; 27(1): 86, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715230

RESUMEN

Currently, the clinical treatment of critical bone defects attributed to various causes remains a great challenge, and repairing these defects with synthetic bone substitutes is the most common strategy. In general, tissue engineering materials that mimic the structural, mechanical and biological properties of natural bone have been extensively applied to fill bone defects and promote in situ bone regeneration. Hydrogels with extracellular matrix (ECM)-like properties are common tissue engineering materials, among which methacrylate-based gelatin (GelMA) hydrogels are widely used because of their tunable mechanical properties, excellent photocrosslinking capability and good biocompatibility. Owing to their lack of osteogenic activity, however, GelMA hydrogels are combined with other types of materials with osteogenic activities to improve the osteogenic capability of the current composites. There are three main aspects to consider when enhancing the bone regenerative performance of composite materials: osteoconductivity, vascularization and osteoinduction. Bioceramics, bioglass, biomimetic scaffolds, inorganic ions, bionic periosteum, growth factors and two-dimensional (2D) nanomaterials have been applied in various combinations to achieve enhanced osteogenic and bone regeneration activities. Three-dimensional (3D)-bioprinted scaffolds are a popular research topic in bone tissue engineering (BTE), and printed and customized scaffolds are suitable for restoring large irregular bone defects due to their shape and structural tunability, enhanced mechanical properties, and good biocompatibility. Herein, the recent progress in research on GelMA-based composite hydrogel scaffolds as multifunctional platforms for restoring critical bone defects in plastic or orthopedic clinics is systematically reviewed and summarized. These strategies pave the way for the design of biomimetic bone substitutes for effective bone reconstruction with good biosafety. This review provides novel insights into the development and current trends of research on GelMA-based hydrogels as effective bone tissue engineering (BTE) scaffolds for correcting bone defects, and these contents are summarized and emphasized from various perspectives (osteoconductivity, vascularization, osteoinduction and 3D-bioprinting). In addition, advantages and deficiencies of GelMA-based bone substitutes used for bone regeneration are put forward, and corresponding improvement measures are presented prior to their clinical application in near future (created with BioRender.com).

20.
ACS Appl Mater Interfaces ; 15(35): 41828-41838, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37632445

RESUMEN

Polymer dielectrics are crucial for use in electrostatic capacitors, owing to their high voltage resistance, high energy storage density, and ultrahigh reliability. Furthermore, high-temperature-resistant polymer dielectrics are applied in various emerging fields. Herein, poly(ether imide) (PEI)-based polymer dielectrics prepared by adding a low loading of dimethylimidazolium cobalt (ZIF-67) with a narrow bandgaps are investigated. The results show that the composites exhibit considerably increased Young's modulus, suppressed conductivity loss, and improved breakdown strength compared with pure PEI. Consequently, a stable energy storage performance is realized for ZIF-67/PEI composites. Particularly, at 150 °C, 1 wt % ZIF-67/PEI composite affords an excellent energy storage density of 4.59 J/cm3 with a discharge energy efficiency of 80.6%, exhibiting a considerable increase compared with the values obtained for PEI (2.58 J/cm3 with a discharge energy efficiency of 68.8%). The results of this study reveal a feasible pathway to design polymer dielectrics with the potential for use in capacitive applications in harsh environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...