RESUMEN
Addressing the demand for integrating strength and durability reinforcement in shape memory polyurethane (SMPU) for diverse applications remains a significant challenge. Here a series of SMPUs with ultra-high strength, self-healing and recyclability, and excellent shape memory properties through introducing dynamic boron-urethane bonds are synthesized. The introducing of boric acid (BA) to polyurethane leading to the formation of dynamic covalent bonds (DCB) boron-urethane, that confer a robust cross-linking structure on the SMPUs led to the formation of ordered stable hydrogen-bonding network within the SMPUs. The flexible crosslinking with DCB represents a novel strategy for balancing the trade-off between strength and durability, with their strengths reaching up to 82.2 MPa while also addressing the issue of durability in prolonged usage through the provision of self-healing and recyclability. The self-healing and recyclability of SMPU are demonstrated through rapid dynamic exchange reaction of boron-urethane bonds, systematically investigated by dynamic mechanical analysis (DMA). This study sheds light on the essential role of such PU with self-healing and recyclability, contributing to the extension of the PU's service life. The findings of this work provide a general strategy for overcoming traditional trade-offs in preparing SMPUs with both high strength and good durability.
Asunto(s)
Boro , Poliuretanos , Poliuretanos/química , Poliuretanos/síntesis química , Boro/química , Uretano/química , Enlace de Hidrógeno , Estructura Molecular , Ácidos Bóricos/químicaRESUMEN
Lithium-sulfur (Li-S) batteries are of great interest due to their high energy density. However, polysulfides shuttle and low S loading severely impede their practical applications. Here, we report design of advanced separators for Li-S batteries using natural minerals with 1D to 3D microstructures. Four natural minerals with different microstructures including 1D halloysite nanotubes, 1D attapulgite nanorods, 2D Li+-montmorillonite (Mmt) nanosheets and 3D porous diatomite were used together with carbon black (CB) for preparation of the mineral/CB-Celgard separators. The Si-OH groups of the minerals act as Lewis acid sites, which could effectively absorb polysulfides by forming LiO and OS bonds with polysulfides. Among all the separators, the Mmt/CB-Celgard separator endowed the Li-S battery with the highest upper plateau discharge capacity (369 mA h g-1), initial reversible capacity (1496 mA h g-1 at 0.1 C), rate performance and cycling stability (666 mA h g-1 after 500 cycles at 1.0 C with 0.046% capacity decay per cycle). The Mmt/CB-Celgard separator also enabled stable cycling of the Li-S battery with high S loading (8.3 mg cm-2) cathode. This work will provide inspiration for future development of advanced separators for high-energy-density Li-S batteries.
RESUMEN
In spite of high theoretical specific capacity and specific energy of lithium-sulfur (Li-S) batteries, the poor cycle stability caused by polysulfides shuttle severely hinders their real-world applications. Here, a natural clay mineral (illite/smectite, ISC) and carbon black (C) coated Celgard@2400 (ISC/C@Celgard) separator is reported. The separator shows super-electrolyte-philicity and good mechanical stability. The low-cost and eco-friendly ISC with abundant -OH groups can quickly trap a lot of polysulfides by Li-O and Li-S bonding with polysulfides. The ISC/C layer with uniform nanopores can also inhibit polysulfides shuttle by physical shield. Moreover, good electrical conductivity of the ISC/C layer can reactivate the adsorbed polysulfides and thus enhance S utilization. So, the separator endows the Li-S battery with very high initial reversible capacity (1322 mA h g-1) at 0.1 C and excellent cycle stability with low capacity decay rate (0.054% per cycle) during 500 cycles at 1.0 C. Furthermore, a very high areal capacity (5.9 mAh cm-2) is achieved for the battery composed of the separator and the self-supporting high S loading (8.9 mg cm-2) CNT/S cathode at 0.32 mA cm-2. This study opens the possibility of developing advanced separators using natural clay minerals for highly stable Li-S batteries.
RESUMEN
In this contribution, nitrogen- and sulfur-codoped 3D cubic-ordered mesoporous carbon (KNOMC) materials with controlled dopant content (10.0-4.6 atom % for nitrogen and 0.94-0.75 atom % for sulfur) are presented, using KIT-6 as the template and pyrrole as the precursor, and its supercapacitive behavior is also investigated. The presented materials exhibit excellent supercapacitive performance by combining electrical double-layer capacitance and pseudocapacitance as well as the enhanced wettability and improved conductivity generated from the incorporation of nitrogen and sulfur into the framework of carbon materials. The specific capacitance of the presented materials reaches 320 F g(-1) at a current density of 1 A g(-1), which is significantly larger than that of the pristine-ordered mesoporous carbon reported in the literature and can even compete with some metal oxides and conducting polymers.
RESUMEN
In the present study, waste phosphogypsum (PG) was utilized firstly to prepare hydroxyapatite nanoparticles (nHAp) via microwave irradiation technology. The nHAp derived from PG exhibited a hexagonal structure with the particle size about 20 nm × 60 nm and high purity. Meanwhile, the adsorption behaviour of fluoride onto the nHAp derived from PG was investigated to evaluate the potential application of this material for the treatment of the wastewater polluted with fluoride. The results indicate that the nHAp derived from PG can be used as an efficient adsorbent for the removal of fluoride from aqueous solution. The maximum adsorption capacities calculated from Langmuir-Freundlich model were 19.742, 26.108, 36.914 and 40.818 mg F(-)/g nHAp for 298, 308, 318 and 328 K, respectively. The pseudo-second order kinetic model was found to provide the best correlation of the used experimental data compared to the pseudo-first order and the adsorption isotherm could be well defined by Langmuir-Freundlich equation. The adsorption mechanism investigation shows that electrostatic interaction and hydrogen bond are the main driving force for fluoride uptake onto nHAp derived from waste PG.