Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Heliyon ; 10(17): e37483, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296196

RESUMEN

Objective: This study aimed to assess the efficacy of a modified exhaust method in pediatric open-heart surgery involving cardiopulmonary bypass. Method: Data from 303 cases conducted at the Department of Cardiac Surgery, Guizhou Hospital, Shanghai Children's Medical Center, between October 2023 and March 2024 were analyzed. Among these cases, 202 utilized the modified exhaust method, divided into group A (101 cases with median thoracotomy) and group C (101 cases with lateral thoracotomy), while 101 cases used the traditional exhaust method in group B (median thoracotomy). Comparative analysis included general patient data, cardiopulmonary bypass duration, aortic cross-clamp time, time for exhaust and reperfusion upon opening, post-reperfusion ST segment abnormalities on electrocardiogram, intracardiac pneumogram observations via esophageal ultrasound, relevant plasma biochemical indexes on postoperative day one, postoperative drainage volume, duration of ventilator use, and length of stay in the intensive care unit (ICU). Results: There was no difference in between-group comparisons regarding age (27.98 ± 3.57 vs. 34.05 ± 3.96 months; P = 0.401) and weight (12.23 ± 0.55vs. 12.59 ± 0.70 Kg; P = 0.563). Longer Cardiopulmonary bypass times were observed in patients undergoing median thoracotomy than those undergoing lateral thoracotomy (group B: 108.47 ± 2.30 min vs. group C: 117.03 ± 2.82 min, P = 0.002; group A: 108.91 ± 2.63 min vs. group C: 117.03 ± 2.82 min, P = 0.035). Exhaust and rebound times after opening were significantly shorter in the modified exhaust-method group compared with the traditional-method group (Group A: 52.62 ± 1.39 s vs. Group B: 65.20 ± 1.49 s, P < 0.001; Group B: 65.20 ± 1.49 s vs. Group C: 4.31 ± 1.16 s, P < 0.001). There was no statistical difference in terms of postoperative biochemical indexes, drainage volume, ventilator use time, and ICU stay time (all P > 0.05). Conclusions: The modified exhaust method demonstrates overall good immediate results in pediatric congenital heart surgery. It was superior to the traditional exhaust method in terms of reducing exhaust times and potentially minimizing the risk of local aortic injuries. Additionally, it appeared to be suitable for lateral thoracotomy surgery.

2.
Cell ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39243763

RESUMEN

Gasdermin-mediated inflammatory cell death (pyroptosis) can activate protective immunity in immunologically cold tumors. Here, we performed a high-throughput screen for compounds that could activate gasdermin D (GSDMD), which is expressed widely in tumors. We identified 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (DMB) as a direct and selective GSDMD agonist that activates GSDMD pore formation and pyroptosis without cleaving GSDMD. In mouse tumor models, pulsed and low-level pyroptosis induced by DMB suppresses tumor growth without harming GSDMD-expressing immune cells. Protection is immune-mediated and abrogated in mice lacking lymphocytes. Vaccination with DMB-treated cancer cells protects mice from secondary tumor challenge, indicating that immunogenic cell death is induced. DMB treatment synergizes with anti-PD-1. DMB treatment does not alter circulating proinflammatory cytokine or leukocyte numbers or cause weight loss. Thus, our studies reveal a strategy that relies on a low level of tumor cell pyroptosis to induce antitumor immunity and raise the possibility of exploiting pyroptosis without causing overt toxicity.

3.
J Thorac Dis ; 16(8): 4967-4976, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39268088

RESUMEN

Background: Acute respiratory distress syndrome (ARDS) is a leading cause of postoperative respiratory failure after cardiac surgery, and the mortality rate is extremely high. Although prone positioning (PP) may be safe and effective for ARDS, it is still not widely adopted in cardiac surgery patients. We aimed to assess the efficacy and safety of early PP in ARDS after cardiac surgery. Methods: This is a single-center retrospective cohort study. We included adult intensive care unit (ICU) patients who developed ARDS with arterial pressure of oxygen to fraction of oxygen ratio (P/F) ≤200 mmHg within 72 hours after cardiac surgery between 1 January 2019 and 1 August 2023. The outcomes were P/F after 1 session of PP, duration of mechanical ventilation (MV) and ICU stay, and adverse events. Results: In total, 79 patients who underwent PP and 87 patients who underwent supine position (SP) were included. The mean time to perform PP after ICU admission was 38.0 hours. The P/F improved significantly after 1 session of PP treatment [160.0 (127.8-184.3) vs. 275.0 (220.0-325.0) mmHg, P<0.001], the duration of MV and ICU stay in the PP group were significantly shorter than those in the SP group [84.0 (64.0-122.0) vs. 120.0 (97.0-182.0) h, P<0.001; 6.0 (5.0-8.0) vs. 8.0 (6.0-12.0) days, P<0.001, respectively]. No adverse events were observed during the PP even in patients with intra-aortic balloon pump (IABP). Conclusions: Early PP treatment is effective and safe for patients with moderate to severe ARDS after cardiac surgery and it is even safe in a subgroup placed with IABP.

4.
Immunohorizons ; 8(8): 586-597, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39186692

RESUMEN

Neutrophil extracellular traps (NETs) function to control infectious agents as well as to propagate inflammatory response in a variety of disease conditions. DNA damage associated with chromatin decondensation and NACHT domain-leucine-rich repeat-and pyrin domain-containing protein 3 (NLRP3) inflammasome activation have emerged as crucial events in NET formation, but the link between the two processes is unknown. In this study, we demonstrate that poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, regulates NET formation triggered by NLRP3 inflammasome activation in neutrophils. Activation of mouse neutrophils with canonical NLRP3 stimulants LPS and nigericin induced NET formation, which was significantly abrogated by pharmacological inhibition of PARP-1. We found that PARP-1 is required for NLRP3 inflammasome assembly by regulating post-transcriptional levels of NLRP3 and ASC dimerization. Importantly, this PARP-1-regulated NLRP3 activation for NET formation was independent of inflammasome-mediated pyroptosis, because caspase-1 and gasdermin D processing as well as IL-1ß transcription and secretion remained intact upon PARP-1 inhibition in neutrophils. Accordingly, pharmacological inhibition or genetic ablation of caspase-1 and gasdermin D had no effect on NLRP3-mediated NET formation. Mechanistically, PARP-1 inhibition increased p38 MAPK activity, which was required for downmodulation of NLRP3 and NETs, because concomitant inhibition of p38 MAPK with PARP-1 restored NLRP3 activation and NET formation. Finally, mice undergoing bacterial peritonitis exhibited increased survival upon treatment with PARP-1 inhibitor, which correlated with increased leukocyte influx and improved intracellular bacterial clearance. Our findings reveal a noncanonical pyroptosis-independent role of NLRP3 in NET formation regulated by PARP-1 via p38 MAPK, which can be targeted to control NETosis in inflammatory diseases.


Asunto(s)
Trampas Extracelulares , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Neutrófilos , Poli(ADP-Ribosa) Polimerasa-1 , Piroptosis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Trampas Extracelulares/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inflamasomas/metabolismo , Neutrófilos/metabolismo , Neutrófilos/inmunología , Ratones Endogámicos C57BL , Nigericina/farmacología , Ratones Noqueados , Peritonitis/metabolismo , Peritonitis/inmunología , Lipopolisacáridos/farmacología , Caspasa 1/metabolismo
5.
Mol Cell ; 84(17): 3336-3353.e7, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39173637

RESUMEN

NLRP3 inflammasome activation, essential for cytokine secretion and pyroptosis in response to diverse stimuli, is closely associated with various diseases. Upon stimulation, NLRP3 undergoes subcellular membrane trafficking and conformational rearrangements, preparing itself for inflammasome assembly at the microtubule-organizing center (MTOC). Here, we elucidate an orchestrated mechanism underlying these ordered processes using human and murine cells. Specifically, NLRP3 undergoes palmitoylation at two sites by palmitoyl transferase zDHHC1, facilitating its trafficking between subcellular membranes, including the mitochondria, trans-Golgi network (TGN), and endosome. This dynamic trafficking culminates in the localization of NLRP3 to the MTOC, where LATS1/2, pre-recruited to MTOC during priming, phosphorylates NLRP3 to further facilitate its interaction with NIMA-related kinase 7 (NEK7), ultimately leading to full NLRP3 activation. Consistently, Zdhhc1-deficiency mitigated LPS-induced inflammation and conferred protection against mortality in mice. Altogether, our findings provide valuable insights into the regulation of NLRP3 membrane trafficking and inflammasome activation, governed by palmitoylation and phosphorylation events.


Asunto(s)
Inflamasomas , Lipoilación , Proteína con Dominio Pirina 3 de la Familia NLR , Transporte de Proteínas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Inflamasomas/metabolismo , Inflamasomas/genética , Animales , Fosforilación , Humanos , Ratones , Células HEK293 , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/genética , Aciltransferasas/metabolismo , Aciltransferasas/genética , Centro Organizador de los Microtúbulos/metabolismo , Ratones Endogámicos C57BL , Red trans-Golgi/metabolismo , Ratones Noqueados , Endosomas/metabolismo , Mitocondrias/metabolismo
7.
Nat Commun ; 15(1): 7244, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39174532

RESUMEN

The filamentous 'Pf' bacteriophages of Pseudomonas aeruginosa play roles in biofilm formation and virulence, but mechanisms governing Pf prophage activation in biofilms are unclear. Here, we identify a prophage regulatory module, KKP (kinase-kinase-phosphatase), that controls virion production of co-resident Pf prophages and mediates host defense against diverse lytic phages. KKP consists of Ser/Thr kinases PfkA and PfkB, and phosphatase PfpC. The kinases have multiple host targets, one of which is MvaU, a host nucleoid-binding protein and known prophage-silencing factor. Characterization of KKP deletion and overexpression strains with transcriptional, protein-level and prophage-based approaches indicates that shifts in the balance between kinase and phosphatase activities regulate phage production by controlling MvaU phosphorylation. In addition, KKP acts as a tripartite toxin-antitoxin system that provides defense against some lytic phages. A conserved lytic phage replication protein inhibits the KKP phosphatase PfpC, stimulating toxic kinase activity and blocking lytic phage production. Thus, KKP represents a phosphorylation-based mechanism for prophage regulation and antiphage defense. The conservation of KKP gene clusters in >1000 diverse temperate prophages suggests that integrated control of temperate and lytic phage infection by KKP-like regulatory modules may play a widespread role in shaping host cell physiology.


Asunto(s)
Lisogenia , Profagos , Pseudomonas aeruginosa , Lisogenia/genética , Pseudomonas aeruginosa/virología , Pseudomonas aeruginosa/genética , Profagos/genética , Profagos/fisiología , Fosforilación , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Fagos Pseudomonas/genética , Fagos Pseudomonas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Regulación Viral de la Expresión Génica
8.
BMC Urol ; 24(1): 153, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068429

RESUMEN

BACKGROUND: Renal calculi are one of the most frequent diseases in urology, and percutaneous nephrolithotomy (PCNL) being the gold standard for treating renal calculi larger than 2 cm. However, traditional rigid nephroscope cannot bend, presents significant limitations during PCNL. This study aims to develop a novel digital flexible nephroscope for PCNL and verify its safety and efficacy using 3D printed models and ex vivo porcine kidney models, providing new equipment for PCNL. METHODS: Based on the determined technical parameters, the novel digital flexible nephroscope was manufactured. First, 3D-printed model and ex vivo porcine kidney models were utilized to simulate the PCNL procedures. Then, the traditional rigid nephroscope and the novel digital flexible nephroscope were utilized to simulate the PCNL procedures on 10 ex vivo porcine kidneys for comparison. We observed and recorded the renal calyces visualized and accessed by both the traditional rigid nephroscope and the novel digital flexible nephroscope. RESULTS: In both the 3D printing and ex vivo porcine kidney models, the novel percutaneous digital flexible nephroscope smoothly entered the renal collecting system through the percutaneous renal tract. It freely changed angles to reach most target calyces, demonstrating significant advantages over the traditional rigid nephroscope. CONCLUSION: The successful development of the novel percutaneous digital flexible nephroscope allows it to be used either independently or as an adjunct in complex stone cases, providing more effective and safer surgical equipment for percutaneous nephrolithotomy.


Asunto(s)
Diseño de Equipo , Impresión Tridimensional , Animales , Porcinos , Nefrolitotomía Percutánea/métodos , Nefrolitotomía Percutánea/instrumentación , Cálculos Renales/cirugía , Nefrostomía Percutánea/instrumentación , Nefrostomía Percutánea/métodos
9.
Curr Opin Hematol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39045882

RESUMEN

PURPOSE OF REVIEW: Atypical chemokine receptor-1 (ACKR1)/Duffy antigen receptor of chemokines (DARC)-associated neutropenia (ADAN; OMIM 611862), previously named benign ethnic neutropenia, and present in two-thirds of individuals identifying as Black in the USA, is associated with mild to moderate decreases in peripheral neutrophil counts that nevertheless do not lead to increased infections. Consequently, recent initiatives have sought to establish normal neutrophil count reference ranges for ADAN, considering it a normal variant rather than a clinical disorder requiring medical intervention. RECENT FINDINGS: A limited number of studies elucidating the mechanism of neutropenia in ADAN has suggested that neutrophils may redistribute from peripheral blood to the tissues including the spleen: this might explain why ADAN is not associated with increased risks of infection since the total number of neutrophils in the body remains normal. In this review, we critically examine the research underlying the molecular basis of ADAN. SUMMARY: Insights into the biology of neutrophils and their trafficking may inform the clinical interpretation of neutropenia in ADAN. The bulk of research suggests that ADAN does not lead to a diminished host defense as do other forms of neutropenia. However, ADAN may lead to increased proinflammatory signaling, with possible implications for senescence of the immune system and predisposition to autoimmunity and cancer.

10.
J Cell Mol Med ; 28(8): e18290, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588015

RESUMEN

Growth hormone inducible transmembrane protein (GHITM), one member of Bax inhibitory protein-like family, has been rarely studied, and the clinical importance and biological functions of GHITM in kidney renal clear cell carcinoma (KIRC) still remain unknown. In the present study, we found that GHITM was downregulated in KIRC. Aberrant GHITM downregulation related to clinicopathological feature and unfavourable prognosis of KIRC patients. GHITM overexpression inhibited KIRC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, GHITM overexpression could induce the downregulation of Notch1, which acts as an oncogene in KIRC. Overexpression of Notch1 effectively rescued the inhibitory effect induced by GHITM upregulation. More importantly, GHITM could regulate PD-L1 protein abundance and ectopic overexpression of GHITM enhanced the antitumour efficiency of PD-1 blockade in KIRC, which provided new insights into antitumour therapy. Furthermore, we also showed that YY1 could decrease GHITM level via binding to its promoter. Taken together, our study revealed that GHITM was a promising therapeutic target for KIRC, which could modulate malignant phenotype and sensitivity to PD-1 blockade of renal cancer cells via Notch signalling pathway.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Riñón , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Fenotipo , Receptor de Muerte Celular Programada 1
11.
Nature ; 630(8016): 437-446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599239

RESUMEN

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)1-10. Here we report that GSDMD Cys191 is S-palmitoylated and that palmitoylation is required for pore formation. S-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.


Asunto(s)
Gasderminas , Lipoilación , Proteínas de Unión a Fosfato , Especies Reactivas de Oxígeno , Animales , Femenino , Humanos , Masculino , Ratones , Aciltransferasas/metabolismo , Microscopía por Crioelectrón , Cisteína/metabolismo , Gasderminas/química , Gasderminas/metabolismo , Inflamasomas/metabolismo , Liposomas/metabolismo , Liposomas/química , Mitocondrias/metabolismo , Proteínas de Unión a Fosfato/química , Proteínas de Unión a Fosfato/metabolismo , Piroptosis , Especies Reactivas de Oxígeno/metabolismo , Células THP-1
12.
Sci Immunol ; 9(94): eadn1452, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38530158

RESUMEN

Plasma membrane perforation elicited by caspase cleavage of the gasdermin D (GSDMD) N-terminal domain (GSDMD-NT) triggers pyroptosis. The mechanisms underlying GSDMD membrane translocation and pore formation are not fully understood. Here, using a proteomic approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner. S-palmitoylation of GSDMD at Cys191/Cys192 (human/mouse), catalyzed by palmitoyl acyltransferases ZDHHC5 and ZDHHC9 and facilitated by reactive oxygen species (ROS), directly mediated membrane translocation of GSDMD-NT but not full-length GSDMD (GSDMD-FL). Palmitoylation of GSDMD-FL could be induced before inflammasome activation by stimuli such as lipopolysaccharide (LPS), consequently serving as an essential molecular event in macrophage priming. Inhibition of GSDMD palmitoylation suppressed macrophage pyroptosis and IL-1ß release, mitigated organ damage, and enhanced the survival of septic mice. Thus, GSDMD-NT palmitoylation is a key regulatory mechanism controlling GSDMD membrane localization and activation, which may offer an additional target for modulating immune activity in infectious and inflammatory diseases.


Asunto(s)
Piroptosis , Animales , Humanos , Ratones , Gasderminas , Lipoilación , Proteómica
13.
Nat Commun ; 15(1): 386, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195694

RESUMEN

Both lytic and apoptotic cell death remove senescent and damaged cells in living organisms. However, they elicit contrasting pro- and anti-inflammatory responses, respectively. The precise cellular mechanism that governs the choice between these two modes of death remains incompletely understood. Here we identify Gasdermin E (GSDME) as a master switch for neutrophil lytic pyroptotic death. The tightly regulated GSDME cleavage and activation in aging neutrophils are mediated by proteinase-3 and caspase-3, leading to pyroptosis. GSDME deficiency does not alter neutrophil overall survival rate; instead, it specifically precludes pyroptosis and skews neutrophil death towards apoptosis, thereby attenuating inflammatory responses due to augmented efferocytosis of apoptotic neutrophils by macrophages. In a clinically relevant acid-aspiration-induced lung injury model, neutrophil-specific deletion of GSDME reduces pulmonary inflammation, facilitates inflammation resolution, and alleviates lung injury. Thus, by controlling the mode of neutrophil death, GSDME dictates host inflammatory outcomes, providing a potential therapeutic target for infectious and inflammatory diseases.


Asunto(s)
Gasderminas , Lesión Pulmonar , Humanos , Neutrófilos , Apoptosis , Piroptosis
14.
J Biomed Opt ; 29(Suppl 1): S11517, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223679

RESUMEN

Significance: Photoacoustic Doppler flowmetry offers quantitative blood perfusion information in addition to photoacoustic vascular contrast for rectal cancer assessment. Aim: We aim to develop and validate a correlational Doppler flowmetry utilizing an acoustic resolution photoacoustic microscopy (AR-PAM) system for blood perfusion analysis. Approach: To extract blood perfusion information, we implemented AR-PAM Doppler flowmetry consisting of signal filtering and conditioning, A-line correlation, and angle compensation. We developed flow phantoms and contrast agent to systemically investigate the flowmetry's efficacy in a series of phantom studies. The developed correlational Doppler flowmetry was applied to images collected during in vivo AR-PAM for post-treatment rectal cancer evaluation. Results: The linearity and accuracy of the Doppler flow measurement system were validated in phantom studies. Imaging rectal cancer patients treated with chemoradiation demonstrated the feasibility of using correlational Doppler flowmetry to assess treatment response and distinguish residual cancer from cancer-free tumor bed tissue and normal rectal tissue. Conclusions: A new correlational Doppler flowmetry was developed and validated through systematic phantom evaluations. The results of its application to in vivo patients suggest it could be a useful addition to photoacoustic endoscopy for post-treatment rectal cancer assessment.


Asunto(s)
Técnicas Fotoacústicas , Neoplasias del Recto , Humanos , Flujometría por Láser-Doppler/métodos , Reología/métodos , Microscopía Acústica/métodos , Acústica , Neoplasias del Recto/diagnóstico por imagen , Técnicas Fotoacústicas/métodos
15.
Neuroscience ; 540: 1-11, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242279

RESUMEN

Mitochondrial dysfunction, which results in the overproduction of oxygen free radicals, is a crucial mechanism underlying cerebral ischemia-reperfusion injury. 4'-Hydroxyl-2-substituted phenylnitronyl nitroxide (HPN), which is an antioxidant and free radical scavenger, can effectively scavenge oxygen free radicals, suggesting its potential as a protective agent against cerebral ischemia-reperfusion injury. In this study, we investigated the effects of HPN on mitochondrial function and apoptosis following cerebral ischemia/reperfusion injury in rats. Healthy adult SD rats were chosen as the experimental subjects, and the rat ischemia/reperfusion injury model was generated using the modified Zea Longa method. The administration of HPN significantly enhanced the activity of endogenous antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). Additionally, HPN effectively preserved the morphology and function of mitochondria, reduced the protein and gene expression of Caspase-3 and Bax, increased the protein and gene expression of Bcl-2, mitigated neuronal apoptosis, improved neurological deficits, and decreased the volume of cerebral infarction. Of interest, the protective effect on brain tissue was more evident with increasing doses of HPN. These findings indicate that HPN can serve as an effective protective agent against cerebral ischemia-reperfusion injury.


Asunto(s)
Isquemia Encefálica , Enfermedades Mitocondriales , Óxidos de Nitrógeno , Daño por Reperfusión , Humanos , Ratas , Animales , Depuradores de Radicales Libres/farmacología , Ratas Sprague-Dawley , Estrés Oxidativo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral , Antioxidantes/farmacología , Apoptosis , Superóxido Dismutasa/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Sustancias Protectoras/farmacología , Reperfusión , Radicales Libres
16.
J Intensive Care Med ; 39(3): 257-267, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37723966

RESUMEN

Objectives: To investigate the effect of our improved nursing strategy on prognosis in immunosuppressed patients with pneumonia and sepsis. Methods: Immunosuppressed patients (absolute lymphocyte count <1000 cells/mm3) with pneumonia and sepsis were enrolled and divided into a control group and treatment group. The treatment group received the improved nursing strategy. The primary outcome in this study was 28-day mortality. Results: In accordance with the study criteria, 1019 patients were finally enrolled. Compared with patients in the control group, those in the treatment group had significantly fewer days on mechanical ventilation [5 (4, 7) versus 5 (4, 7) days, P = .03] and lower intensive care unit (ICU) mortality [21.1% (132 of 627) vs 28.8% (113 of 392); P = .005] and 28-day mortality [22.2% (139 of 627) vs 29.8% (117 of 392); P = .006]. The treatment group also had a shorter duration of ICU stay [9 (5, 15) vs 11 (6, 22) days, P = .0001] than the control group. The improved nursing strategy acted as an independent protective factor in 28-day mortality: odds ratio 0.645, 95% confidence interval: 0.449-0.927, P = .018. Conclusion: Our improved nursing strategy shortened the duration of mechanical ventilation and the ICU stay and decreased ICU mortality and 28-day mortality in immunosuppressed patients with pneumonia and sepsis. Trial registration: ChiCTR.org.cn, ChiCTR-ROC-17010750. Registered 28 February 2017.


Asunto(s)
Neumonía , Sepsis , Humanos , Estudios Prospectivos , Respiración Artificial , Pronóstico , Sepsis/terapia , Unidades de Cuidados Intensivos , Estudios Retrospectivos
17.
Neurochem Res ; 49(3): 785-799, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38103103

RESUMEN

Abundant investigations have shown that hypobaric hypoxia (HH) causes cognitive impairment, mostly attributed to oxidative stress, inflammation, and apoptosis. HPN (4'-hydroxyl-2-subsitiuted phenylnitronyl nitroxide) is an excellent free radical scavenger with anti-inflammatory and anti-apoptotic activities. Our previous study has found that HPN exhibited neuroprotective effect on HH induced brain injury. In the present study, we examined the protective effect and potential mechanism of HPN on HH-induced cognitive impairment. Male mice were exposed to HH at 8000 m for 3 days with and without HPN treatment. Cognitive performance was assessed by the eight-arm radical maze. The histological changes were assayed by Nissle staining. The hippocampus cell apoptosis was detected by Tunnel staining. The levels of inflammatory cytokines and oxidative stress markers were detected. The expression of oxidative stress, inflammation-related and apoptosis-related proteins was determined by western blot. HPN administration significantly and mitigated HH induced histological damages and spatial memory loss with the evidence of decreased working memory error (WME), reference memory error (RME), total errors (TE) and total time (TT). In addition, HPN treatment significantly decreased the content of H2O2 and MDA, increased the levels of SOD, CAT, GSH-Px and GSH, and inhibited the synthesis of TNF-α, IL-1ß and IL-6. Moreover, HPN administration could down-regulate the expression of NF-κB, TNF-α, Bax, and cleaved caspase-3 and up-regulate the expression of Nrf2, HO-1 and Bcl-2. The number of apoptotic cells was also significantly decreased in the hippocampus of mice in the HPN group. There results indicate that HPN improve HH-induced cognitive impairment by alleviating oxidative stress damage, suppressing inflammatory response and apoptosis and may be a powerful candidate compound for alleviating memory loss induced by HH.


Asunto(s)
Disfunción Cognitiva , Óxidos de Nitrógeno , Factor de Necrosis Tumoral alfa , Ratones , Masculino , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Hipoxia/metabolismo , Apoptosis , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Inflamación/metabolismo , Disfunción Cognitiva/tratamiento farmacológico
18.
J Med Educ Curric Dev ; 10: 23821205231219396, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152834

RESUMEN

Objectives: The routine teaching mode of diabetes mellitus (DM) is divided into various sub-majors of medical laboratory, which is not conducive to clinical laboratory physicians quickly mastering relevant knowledge. A novel DM laboratory testing pathway is established to improve teaching efficiency and enhance the effects of talent cultivation in laboratory medicine. Methods: The guidelines and expert consensuses of DM were gathered from professional websites and databases. The clinical laboratory diagnostic pathway was formulated, and the questionnaire and mutual evaluation were used to evaluate the teaching effectiveness of 8-year undergraduate students enrolled in 2018 and enrolled in 2019, respectively. Results: Clinical laboratory physicians developed and approved the DM clinical laboratory diagnostic pathway, which included the entire process of DM diagnosis and differential diagnosis, drug selection, treatment impact monitoring, prognosis evaluation, etc. The results of the questionnaires showed that, in comparison to the teaching mode used with the students enrolled in 2018 and enrolled in 2019, the percentages of more improvement and significant improvement were significantly increased (P < 0.01) and the percentages of no improvement and slight improvement were significantly decreased (P < 0.01). Following the instruction of the DM clinical laboratory diagnostic route, the results were greatly improved, including points emphasized and the accuracy of responding to questions, among other things, according to the teachers' and students' mutual evaluation (P < 0.05). Conclusions: To enhance the teaching quality in laboratory medicine, it is required to build the disease clinical laboratory diagnostic pathway for a novel teaching method. This may boost teachers' and students' confidence and broaden their knowledge.

20.
Front Med ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991709

RESUMEN

This cohort study was performed to explore the influence of intensive care unit (ICU) quality on in-hospital mortality of veno-venous (V-V) extracorporeal membrane oxygenation (ECMO)-supported patients in China. The study involved all V-V ECMO-supported patients in 318 of 1700 tertiary hospitals from 2017 to 2019, using data from the National Clinical Improvement System and China National Critical Care Quality Control Center. ICU quality was assessed by quality control indicators and capacity parameters. Among the 2563 V-V ECMO-supported patients in 318 hospitals, a significant correlation was found between ECMO-related complications and prognosis. The reintubation rate within 48 hours after extubation and the total ICU mortality rate were independent risk factors for higher in-hospital mortality of V-V ECMO-supported patients (cutoff: 1.5% and 7.0%; 95% confidence interval: 1.05-1.48 and 1.04-1.45; odds ratios: 1.25 and 1.23; P = 0.012 and P = 0.015, respectively). Meanwhile, the V-V ECMO center volume was a protective factor (cutoff of ≥ 50 cases within the 3-year study period; 95% confidence interval: 0.57-0.83, odds ratio: 0.69, P = 0.0001). The subgroup analysis of 864 patients in 11 high-volume centers further strengthened these findings. Thus, ICU quality may play an important role in improving the prognosis of V-V ECMO-supported patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...