Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(7): 10723-10731, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473032

RESUMEN

Precise information of positions and sizes of atom clouds is required for atom-interferometry-based G measurements. In this work, characterizing atom clouds using a charge-coupled device (CCD) is presented. The parameters of atom clouds are extracted from fluorescence images captured by the CCD. For characterization, in-situ calibration of the magnification of the imaging system is implemented using the free-fall distance of atom clouds as the dimension reference. Moreover, influence of the probe beam on measuring the positions of atom clouds is investigated, and a differential measurement by reversing the direction of the probe beam is proposed to suppress the influence. Finally, precision at sub-mm level for characterizing atom clouds is achieved.

2.
Rev Sci Instrum ; 92(5): 053202, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243337

RESUMEN

As part of a program to determine the gravitational constant G using multiple independent methods in the same laboratory, an atom gravity gradiometer is being developed. The gradiometer is designed with two magneto-optical traps to ensure both the fast simultaneous launch of two atomic clouds and an optimized configuration of source masses. Here, the design of the G measurement by atom interferometry is detailed, and the experimental setup of the atom gravity gradiometer is reported. A preliminary sensitivity of 3 × 10-9 g/Hz to differential gravity acceleration is obtained, which corresponds to 99 E/Hz (1 E = 10-9 s-2) for the gradiometer with a baseline of 0.3 m. This provides access to measuring G at the level of less than 200 parts per million in the first experimental stage.

3.
Rev Sci Instrum ; 92(6): 063202, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34243513

RESUMEN

As the existence of the gravity gradient, the output of gravimeters is actually the gravitational acceleration at the reference instrumental height. Precise knowledge of the reference height is indispensable in the utilization of gravity measurements, especially for absolute gravimeters. Here, we present an interferometric method to measure the distance between the atomic cloud and a reflecting mirror directly, which consequently determines the reference height of our atom gravimeter. This interferometric method is based on a frequency jump of Raman lasers applied at the π pulse of the atom interferometer, which induces an additional phase shift proportional to the interested distance. An uncertainty of 2 mm is achieved here for the distance measurement, and the effect of the gravity gradient on absolute gravity measurements can thus be constrained within 1 µGal. This work provides a concrete-object-based measurement of the reference height for atom gravimeters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...