Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(13): 15879-15892, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38529805

RESUMEN

Tendon regeneration is greatly influenced by the oxidant and the inflammatory microenvironment. Persistent inflammation during the tendon repair can cause matrix degradation, tendon adhesion, and excessive accumulation of reactive oxygen species (ROS), while excessive ROS affect extracellular matrix remodeling and tendon integration. Herein, we used tannic acid (TA) to modify a decellularized tendon slice (DTS) to fabricate a functional scaffold (DTS-TA) with antioxidant and anti-inflammatory properties for tendon repair. The characterizations and cytocompatibility of the scaffolds were examined in vitro. The antioxidant and anti-inflammatory activities of the scaffold were evaluated in vitro and further studied in vivo using a subcutaneous implantation model. It was found that the modified DTS combined with TA via hydrogen bonds and covalent bonds, and the hydrophilicity, thermal stability, biodegradability, and mechanical characteristics of the scaffold were significantly improved. Afterward, the results demonstrated that DTS-TA could effectively reduce inflammation by increasing the M2/M1 macrophage ratio and interleukin-4 (IL-4) expression, decreasing the secretion of interleukin-6 (IL-6) and interleukin-1ß (IL-1ß), as well as scavenging excessive ROS in vitro and in vivo. In summary, DTS modified with TA provides a potential versatile scaffold for tendon regeneration.


Asunto(s)
Antioxidantes , Polifenoles , Andamios del Tejido , Humanos , Andamios del Tejido/química , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Tendones , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Regeneración
2.
J Control Release ; 360: 842-857, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37478916

RESUMEN

Stem cell-based treatment of tendon injuries remains to have some inherent issues. Extracellular vesicles derived from stem cells have shown promising achievements in tendon regeneration, though their retention in vivo is low. This study reports on the use of a collagen binding domain (CBD) to bind extracellular vesicles, obtained from tendon-derived stem cells (TDSCs), to collagen. CBD-extracellular vesicles (CBD-EVs) were coupled to decellularized bovine tendon sheets (DBTS) to fabricate a bio-functionalized scaffold (CBD-EVs-DBTS). Our results show that thus obtained bio-functionalized scaffolds facilitate the proliferation, migration and tenogenic differentiation of stem cells in vitro. Furthermore, the scaffolds promote endogenous stem cell recruitment to the defects, facilitate collagen deposition and improve the biomechanics of injured tendons, thus resulting in functional regeneration of tendons.


Asunto(s)
Vesículas Extracelulares , Andamios del Tejido , Animales , Bovinos , Andamios del Tejido/química , Tendones , Colágeno/química , Células Madre , Diferenciación Celular , Regeneración , Ingeniería de Tejidos/métodos
3.
NPJ Regen Med ; 7(1): 26, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474221

RESUMEN

Tendon regeneration highly relies on biomechanical and biochemical cues in the repair microenvironment. Herein, we combined the decellularized bovine tendon sheet (DBTS) with extracellular matrix (ECM) from tendon-derived stem cells (TDSCs) to fabricate a biomechanically and biochemically functional scaffold (tECM-DBTS), to provide a functional and stem cell ECM-based microenvironment for tendon regeneration. Our prior study showed that DBTS was biomechanically suitable to tendon repair. In this study, the biological function of tECM-DBTS was examined in vitro, and the efficiency of the scaffold for Achilles tendon repair was evaluated using immunofluorescence staining, histological staining, stem cell tracking, biomechanical and functional analyses. It was found that tECM-DBTS increased the content of bioactive factors and had a better performance for the proliferation, migration and tenogenic differentiation of bone marrow-derived stem cells (BMSCs) than DBTS. Furthermore, our results demonstrated that tECM-DBTS promoted tendon regeneration and improved the biomechanical properties of regenerated Achilles tendons in rats by recruiting endogenous stem cells and participating in the functionalization of these stem cells. As a whole, the results of this study demonstrated that the tECM-DBTS can provide a bionic microenvironment for recruiting endogenous stem cells and facilitating in situ regeneration of tendons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...