Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2404403, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044359

RESUMEN

Photopyroelectric-based circularly polarized light (CPL) detection, coupling the pyro-phototronic effect and chiroptical phenomena, has provided a promising platform for high-performance CPL detectors. However, as a novel detection strategy, photopyroelectric-based CPL detection is currently restricted by the short-wave optical response, underscoring the urgent need to extend its response range. Herein, visible-to-near-infrared CPL detection induced by the pyro-phototronic effect is first realized in chiral-polar perovskites. Specifically, chiral-polar multilayered perovskites (S-BPEA)2FAPb2I7 (1-S, S-BPEA = (S)-1-4-Bromophenylethylammonium, FA = formamidinium) with spontaneous polarization shows intrinsic pyroelectric and photopyroelectric performance. Strikingly, combining its merits of the pyro-phototronic effect and intrinsic wide-spectrum spin-selective effect, chiral multilayered 1-S presents efficient photopyroelectric-based broadband CPL detection performance spanning 405-785 nm. This research first realizes photopyroelectric-based infrared CPL detection and also sheds light on developing high-performance broadband CPL detectors based on the pyro-phototronic effect in the fields of optics, optoelectronics, and spintronics.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39011746

RESUMEN

Bismuth-based halide perovskites have shown great potential for direct X-ray detection, attributable to their nontoxicity and advantages in detection sensitivity and spatial resolution. However, the practical application of such materials still faces the critical challenge of combining both high sensitivity and low detection limits. Here, we report a new type of zero-dimensional (0D) perovskite (HIS)BiI5 (1, where HIS2+ = histamine) with high sensitivity and a low detection limit. Structurally, the strong N-H···I hydrogen bonds between HIS2+ cations and inorganic frameworks enhance the rigidity of the structure and diminish the intermolecular distance between adjacent inorganic [Bi2I10]4- dimers. By virtue of such structural merits, single crystal 1 exhibits excellent physical properties perpendicular to both the (001) and (010) faces. Perpendicular to the (010) face, 1 exhibited a high electrical resistivity (2.31 × 1011 Ω cm) and a large carrier mobility-lifetime product (µτ) (2.81 × 10-4 cm2 V-1) under X-ray illumination. Benefiting from these superior physical properties, it demonstrates an excellent X-ray detection capability with a sensitivity of approximately 103 µC Gyair-1 cm-2 and a detection limit of 36 nGyair s-1 in both directions perpendicular to the (001) and (010) crystal faces. These results provide a promising candidate material for the development of new, lead-free, high-performance X-ray detectors.

3.
Mater Horiz ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946550

RESUMEN

Birefringent crystals can manipulate the phase and polarization of light, so they are widely used as essential components in various optical devices. Common strategies to construct birefringent crystals are introducing metal cations that are either able to realize favorable coordination with functional anionic units or are susceptible to polarizability anisotropy. Herein, we report a metal-free crystal, NH4(H2C6N7O3)·2H2O, synthesized using the facile solution method. In the crystal structure of NH4(H2C6N7O3)·2H2O, (H2C6N7O3)- functional units are assembled in an optimal manner by cooperative non-covalent interactions, i.e., hydrogen bonding and π-π interactions. As a result, this metal-free crystal possesses exceptional birefringence up to 0.54@550 nm, which is larger than those of most metal-containing birefringent crystals. In addition, the interference color of this crystal does not change obviously from 243 K to 313 K, indicating that the birefringence is robust at different temperatures. This work will inspire useful insights into the role of non-covalent interactions in designing outstanding birefringent crystals for efficient polarized optical devices.

4.
JACS Au ; 4(6): 2393-2402, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38938789

RESUMEN

Metal halide perovskites have outperformed conventional inorganic semiconductors in direct X-ray detection due to their ease of synthesis and intriguing photoelectric properties. However, the operational instability caused by severe ion migration under a high external electric field is still a big concern for the practical application of perovskite detectors. Here, we report a 2D (BPEA)2PbI4 (BPEA = R-1-(4-bromophenyl)ethylammonium) perovskite with Br-substituted aromatic spacer capable of introducing abundant interactions, e.g., the molecular electrostatic forces between Br atoms and aromatic rings and halogen bonds of Br-I, in the interlayer space, which effectively suppresses ion migration and thus enables superior operational stability. Constructing direct X-ray detectors based on high-quality single crystals of (BPEA)2PbI4 results in a high sensitivity of 1,003 µC Gy-1 cm-2, a low detection limit of 366 nGy s-1, and an ultralow baseline drift of 3.48 × 10-8 nA cm-1 s-1 V-1 at 80 V bias. More strikingly, it also exhibits exceptional operational stability under high flux, long-time X-ray irradiation, and large working voltage. This work shows an integration of multiple interlayer interactions to stabilize perovskite X-ray detectors, providing new insights into the future design of perovskite optoelectronic devices toward practical application.

5.
Food Res Int ; 190: 114593, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945609

RESUMEN

Long-term excessive intake of sodium negatively impacts human health. Effective strategies to reduce sodium content in foods include the use of salty and salt taste-enhancing peptides, which can reduce sodium intake without compromising the flavor or salt taste. Salty and salt taste-enhancing peptides naturally exist in various foods and predominantly manifest as short-chain peptides consisting of < 10 amino acids. These peptides are primarily produced through chemical or enzymatic hydrolysis methods, purified, and identified using ultrafiltration + gel filtration chromatography + liquid chromatography-tandem mass spectrometry. This study reviews the latest developments in these purification and identification technologies, and discusses methods to evaluate their effectiveness in saltiness perception. Additionally, the study explores four biological channels potentially involved in saltiness perception (epithelial sodium channel, transient receptor potential vanilloid 1, calcium-sensing receptor (CaSR), and transmembrane channel-like 4 (TMC4)), with the latter three primarily functioning under high sodium levels. Among the channels, salty taste-enhancing peptides, such as γ-glutamyl peptides, may co-activate the CaSR channel with calcium ions to participate in saltiness perception. Salty taste-enhancing peptides with negatively charged amino acid side chains or terminal groups may replace chloride ions and activate the TMC4 channel, contributing to saltiness perception. Finally, the study discusses the feasibility of using these peptides from the perspectives of food material constraints, processing adaptability, multifunctional application, and cross-modal interaction while emphasizing the importance of utilizing computational technology. This review provides a reference for advancing the development and application of salty and salt-enhancing peptides as sodium substitutes in low-sodium food formulations.


Asunto(s)
Péptidos , Cloruro de Sodio Dietético , Percepción del Gusto , Gusto , Humanos
6.
Inorg Chem ; 63(24): 11340-11346, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38842098

RESUMEN

Two-dimensional (2D) metal-halide perovskites have shown broad application prospects in the field of optoelectronic detection. The presence of the natural quantum-well structure results in strong anisotropy of physical properties, while studies on anisotropic X-ray responses remain insufficient. Here, we present an intriguing anisotropy of X-ray-responsive behaviors in a 2D halide perovskite, (t-ACH)2(DMA)Pb2Br7 (1, where t-ACH is trans-4-(aminomethyl)cyclohexanecarboxylate and DMA is dimethylamine), in which the secondary amine DMA+ cation with a large ionic radius locates inside the perovskite cage to form inorganic frameworks. The alternative alignment of inorganic slabs and organic bilayers creates a typical quantum-well architecture, which accounts for the generation of photoelectronic anisotropy. High-quality crystals of 1 exhibit notable semiconducting properties with a large µτ product (1.9 × 10-4 cm2 V-1). Intriguingly, 1 has better X-ray detection sensitivity (∼569.9 µC Gyair-1 cm-2) along the in-plane direction, which is attributed to its excellent charge carrier transport performance in this direction. Conversely, the higher resistance stemming from the organic barrier results in a lower detection limit along the out-of-plane direction (∼78.1 nGyair s-1), much lower than the medical diagnostic criteria (∼5.5 µGyair s-1). This work might open up new possibilities for the creative use of hybrid perovskites in direct X-ray detection.

7.
Small ; : e2401545, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837884

RESUMEN

Polar metal halide hybrid perovskites (PHPs) that exhibit outstanding bulk photovoltaic effect (BPVE), excellent semiconductor features, and strong radiation absorption ability, have shown prominent advantages in highly sensitive direct X-ray detection. However, it is still a challenge to explore PHPs with high BPVE temperature ranges, answering the demand of developing thermally stable passive X-ray detection. Herein, by intercalating arylamine into lead tribromide and inducing order-disorder phase transition, a 2D multilayered PHPs (BZA)2(MA)Pb2Br7 (BZPB, BZA = benzylamine, MA = methylamine) is synthesized. BZPB crystallizes in a polar space group Aea2 at a low-temperature phase and demonstrates a significant open-circuit of 0.3 V deriving from BPVE under X-ray irradiation. Meanwhile, the strong X-ray absorption coefficient and outstanding carrier transport capability of the bilayered lead halide framework associated with the polar BPVE give BZPB excellent X-ray detection abilities. At 0 V bias, the impressive sensitivity of BZPB is 98 µC Gy-1 cm-2. Importantly, the introduction of the rigid BZA ring increases the energy barrier of phase transition and thus dramatically enhances the X-ray detection operating temperature of BZPB up to 409 K without significant performance degradation. This work strongly reveals the great potential of rational design of metal halide hybrid perovskites for X-ray detection applications.

8.
Small ; : e2400549, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726954

RESUMEN

A large optical anisotropy is the most important parameter of birefringent crystals. Integrating π-conjugated groups with large polarizable anisotropy into target compounds is a common strategy for constructing brilliant birefringent crystals. However, the key problem is to enhance the density of the birefringence-active units and further arrange them parallelly. In this study, three novel birefringent crystals, C9H7NBrX (X = Cl, Br, NO3), are successfully synthesized by introducing a new birefringence-active [C9H7NBr]+ unit. Interestingly, these compounds feature similar layered structures but exhibit different optical anisotropies at 550 nm (0.277 for C9H7NBrCl, 0.328 for C9H7NBrBr, and 0.401 for C9H7NBrNO3) owing to the different anions in them. Particularly, the small trigonal planar NO3 anions perfectly fill the interstices of the π-conjugated [C9H7NBr]+ groups with large optical anisotropy, with the resulting compound C9H7NBrNO3 showing superior optical properties compared to the others. The above findings provide strategies for designing new optical materials with large birefringence by matching birefringence-active groups of different sizes. Additionally, a new theory for predicting and comparing the polarizability anisotropy of compounds is proposed, which would guide in exploring large birefringent crystals.

9.
Small ; : e2403198, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738744

RESUMEN

Hydrogen bonding as a multifunctional tool has always influenced the structure of hybrid perovskites. Compared with the research on hydrogen bonding, the study of halogen-halogen interactions on the structure and properties of hybrid perovskites is still in its early stages. Herein, a polar bilayered hybrid perovskite (IEA)2FAPb2I7 (IEA+ is 2-iodoethyl-1-ammonium, FA is formamidinium) with iodine-substituted spacer is successfully constructed by changing the configuration of interlayer cations and regulating non-covalent interactions at the organic-inorganic interface, which shows a shorter interlayer spacing and higher density (ρ = 3.862 g cm-3). The generation of structure polarity in (IEA)2FAPb2I7 is caused by the synergistic effect of hydrogen bonding and halogen-halogen interactions. Especially, as the length of the carbon chain in organic cations decreases, the I---I interaction in the system gradually strengthens, which may be the main reason for the symmetry-breaking. Polarity-induced bulk photovoltaics (Voc = 1.0 V) and higher density endow the device based on (I-EA)2FAPb2I7 exhibit a high sensitivity of 175.6 µC Gy-1 cm-2 and an ultralow detection limit of 60.4 nGy s-1 at 0 V bias under X-ray irradiation. The results present a facile approach for designing polar multifunctional hybrid perovskites, also providing useful assistance for future research on halogen-halogen interactions.

10.
Inorg Chem ; 63(24): 11187-11193, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38817098

RESUMEN

Birefringence is an important linear optical property of anisotropic crystals that plays a significant role in regulating light polarization. A new bialkali-rare earth metal sulfate, NaRbY2(SO4)4 compound, consisting of non-π-conjugated alkali metals and rare earth metal-centered dodecahedral YO8 has been synthesized. The structure analysis suggests that the three-dimensional (3D) structure of the compound is found to be attributable to the combination of dodecahedral YO8 and tetrahedral SO4 groups with Na+ and Rb+ located in the cavities. The ultraviolet, visible, and near-infrared (UV-vis-NIR) spectra reveal that the compound exhibits transparency at a wavelength of less than 200 nm. The observed birefringence of the compound is 0.045@550 nm, which is comparatively larger than that of most deep-ultraviolet (DUV) birefringent crystals. The birefringence mainly originated from the YO8 dodecahedron, which is suggested by first-principles calculations. This research work can provide a useful perspective to explore new DUV sulfates with excellent birefringence.

11.
Mol Neurobiol ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795301

RESUMEN

Spinal cord injury (SCI) is a severe neurological condition that can lead to paralysis or even death. This study explored the potential benefits of bone marrow mesenchymal stem cell (BMSC) transplantation for repairing SCI. BMSCs also differentiate into astrocytes within damaged spinal cord tissues hindering the cell transplantation efficacy, therefore it is crucial to enhance their neuronal differentiation rate to facilitate spinal cord repair. Wnt5a, an upstream protein in the non-classical Wnt signaling pathway, has been implicated in stem cell migration, differentiation, and neurite formation but its role in the neuronal differentiation of BMSCs remains unclear. Thus, this study investigated the role and underlying mechanisms of Wnt5a in promoting neuronal differentiation of BMSCs both in vivo and in vitro. Wnt5a enhanced neuronal differentiation of BMSCs in vitro while reducing astrocyte differentiation. Additionally, high-throughput RNA sequencing revealed a correlation between Wnt5a and phosphoinositide 3-kinase (PI3K)/protein kinase B(AKT) signaling, which was confirmed by the use of the PI3K inhibitor LY294002 to reverse the effects of Wnt5a on BMSC neuronal differentiation. Furthermore, transplantation of Wnt5a-modified BMSCs into SCI rats effectively improved the histomorphology (Hematoxylin and eosin [H&E], Nissl and Luxol Fast Blue [LFB] staining), motor function scores (Footprint test and Basso-Beattie-Bresnahan [BBB]scores)and promoted neuron production, axonal formation, and remodeling of myelin sheaths (microtubule associated protein-2 [MAP-2], growth-associated protein 43 [GAP43], myelin basic protein [MBP]), while reducing astrocyte production (glial fibrillary acidic protein [GFAP]). Therefore, targeting the Wnt5a/PI3K/AKT pathway could enhance BMSC transplantation for SCI treatment.

12.
J Int Med Res ; 52(5): 3000605241253756, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38796313

RESUMEN

Prostatic stromal tumors, encompassing prostatic sarcoma and stromal tumors of uncertain malignant potential (STUMP), represent an exceedingly rare category of prostatic diseases, with a prevalence of less than 1%. We present a rare case involving a man in his early 40s diagnosed with STUMP. Despite presenting with normal prostate-specific antigen (PSA) concentrations, the patient experienced persistent dysuria and gross hematuria for >7 months, leading to an initial misdiagnosis of benign prostatic hyperplasia. Persistent symptoms prompted further investigation, with magnetic resonance imaging (MRI) revealing a suspicious lesion on the left side of the prostate, initially thought to be malignant. Transrectal prostatic biopsy subsequently confirmed the presence of mucinous liposarcoma, with no medical history of diabetes, coronary heart disease, or hypertension. The treatment approach comprised robot-assisted laparoscopic radical prostatectomy, culminating in a postoperative pathological definitive diagnosis of STUMP. This case underscores the indispensable role of early MRI in the diagnostic process, highlighting the necessity of detailed pathological examination for a conclusive diagnosis. Our report aims to illuminate the diagnostic challenges and potential treatment pathways for STUMP, emphasizing its consideration in the differential diagnosis of prostatic tumors to advance clinical outcomes in this rare but important condition.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/diagnóstico por imagen , Adulto , Diagnóstico Diferencial , Prostatectomía , Próstata/patología , Próstata/cirugía , Próstata/diagnóstico por imagen , Antígeno Prostático Específico/sangre , Hiperplasia Prostática/cirugía , Hiperplasia Prostática/patología , Hiperplasia Prostática/diagnóstico por imagen , Hiperplasia Prostática/diagnóstico , Sarcoma/patología , Sarcoma/cirugía , Sarcoma/diagnóstico , Sarcoma/diagnóstico por imagen
13.
Sci Bull (Beijing) ; 69(14): 2205-2211, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38599957

RESUMEN

There is a pressing demand for the development of novel birefringent crystals tailored for compact optical components, especially for crystals exhibiting large birefringence across a range of temperatures. This has commonly been achieved by introducing various deformable groups with high polarizability anisotropy. In this study, we combined both rigid and deformable groups to synthesise a new birefringent crystal, Al2Te2MoO10, which demonstrates an exceptional birefringence value of 0.29@550 nm at room temperature. Not only is this higher birefringence than that of commercial crystals, but Al2Te2MoO10 exhibits excellent birefringence stability over a wide temperature range, from 123 to 503 K. In addition, the first-principles theory calculations and structural analyses suggest that although the rigid AlO6 groups do not make much contribution to the prominent birefringence, they nonetheless played a role in maintaining the structural anisotropy at elevated temperatures. Based on these findings, this paper proposes a novel structural design strategy to complement conventional approaches for developing optimal birefringent crystals under various environmental conditions.

14.
Nat Nanotechnol ; 19(6): 758-765, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38429492

RESUMEN

The discovery of ultraconfined polaritons with extreme anisotropy in a number of van der Waals (vdW) materials has unlocked new prospects for nanophotonic and optoelectronic applications. However, the range of suitable materials for specific applications remains limited. Here we introduce tellurite molybdenum quaternary oxides-which possess non-centrosymmetric crystal structures and extraordinary nonlinear optical properties-as a highly promising vdW family of materials for tunable low-loss anisotropic polaritonics. By employing chemical flux growth and exfoliation techniques, we successfully fabricate high-quality vdW layers of various compounds, including MgTeMoO6, ZnTeMoO6, MnTeMoO6 and CdTeMoO6. We show that these quaternary vdW oxides possess two distinct types of in-plane anisotropic polaritons: slab-confined and edge-confined modes. By leveraging metal cation substitutions, we establish a systematic strategy to finely tune the in-plane polariton propagation, resulting in the selective emergence of circular, elliptical or hyperbolic polariton dispersion, accompanied by ultraslow group velocities (0.0003c) and long lifetimes (5 ps). Moreover, Reststrahlen bands of these quaternary oxides naturally overlap that of α-MoO3, providing opportunities for integration. As an example, we demonstrate that combining α-MoO3 (an in-plane hyperbolic material) with CdTeMoO6 (an in-plane isotropic material) in a heterostructure facilitates collimated, diffractionless polariton propagation. Quaternary oxides expand the family of anisotropic vdW polaritons considerably, and with it, the range of nanophotonics applications that can be envisioned.

15.
Small ; : e2311969, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529775

RESUMEN

Two-dimensional (2D) halide perovskites (HPs) are of significant interest to researchers because of their natural structural frameworks and intriguing optoelectronic properties. However, the direct fabrication of ordered mixed-spacer quasi-2D HPs remains challenging. Herein, a synthetic strategy inspired by the principle of supramolecular synthons is employed for the self-assembly of a series of ordered mixed-spacer bilayered HPs. The key innovation involves the introduction of intermolecular hydrogen bonds using a bifunctional 3-aminopropionitrile cation. Three homogeneous n = 2 structures are obtained, with a subtly ordered perovskite connected by two distinct types of organic cation layers, resulting in a recurrent ABAB' stacking sequence. These three compounds exhibit attractive semiconducting properties. Moderate bandgaps in the range of 2.70 to 2.76 eV with an absorption wavelength range of 448-459 nm exhibit excellent photoelectric response. Moreover, the ordered structures facilitate excellent polarization-sensitive photodetection, with an impressive on/off ratio of 103. The response speed ranged from 298 to 381 µs, and the out-of-plane polarization-related dichroism ratio is determined to be 1.19. Such ordered mixed-spacer bilayered perovskites have not been reported. These results enrich the HPs system and play a significant role in the direct assembly of novel perovskites with ordered structures.

16.
J Am Chem Soc ; 146(12): 8298-8307, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38498306

RESUMEN

Antiferroelectric materials with an electrocaloric effect (ECE) have been developed as promising candidates for solid-state refrigeration. Despite the great advances in positive ECE, reports on negative ECE remain quite scarce because of its elusive physical mechanism. Here, a giant negative ECE (maximum ΔS ∼ -33.3 J kg-1 K-1 with ΔT ∼ -11.7 K) is demonstrated near room temperature in organometallic perovskite, iBA2EA2Pb3I10 (1, where iBA = isobutylammonium and EA = ethylammonium), which is comparable to the greatest ECE effects reported so far. Moreover, the ECE efficiency ΔS/ΔE (∼1.85 J cm kg-1 K-1 kV-1) and ΔT/ΔE (∼0.65 K cm kV-1) are almost 2 orders of magnitude higher than those of classical inorganic ceramic ferroelectrics and organic polymers, such as BaTiO3, SrBi2Ta2O9, Hf1/2Zr1/2O2, and P(VDF-TrFE). As far as we know, this is the first report on negative ECE in organometallic hybrid perovskite ferroelectric. Our experimental measurement combined with the first-principles calculations reveals that electric field-induced antipolar to polar structural transformation results in a large change in dipolar ordering (from 6.5 to 45 µC/cm2 under the ΔE of 18 kV/cm) that is closely related to the entropy change, which plays a key role in generating such giant negative ECE. This discovery of field-induced negative ECE is unprecedented in organometallic perovskite, which sheds light on the exploration of next-generation refrigeration devices with high cooling efficiency.

17.
Small ; : e2312281, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456782

RESUMEN

The low-toxic and environmentally friendly 2D lead-free perovskite has made significant progress in the exploration of "green" X-ray detectors. However, the gap in detection performance between them and their lead-based analogues remains a matter of concern that cannot be ignored. To reduce this gap, shortening the interlayer spacing to accelerate the migration and collection of X-ray carriers is a promising strategy. Herein, a Dion-Jacobson (DJ) lead-free double perovskite (4-AP)2 AgBiBr8 (1, 4-AP = 4-amidinopyridine) with an ultra-narrow interlayer spacing of 3.0 Å, is constructed by utilizing π-conjugated aromatic spacers. Strikingly, the subsequent enhanced carrier transport and increased crystal density lead to X-ray detectors based on bulk single crystals of 1 with a high sensitivity of 1117.3 µC Gy-1  cm-2 , superior to the vast majority of similar double perovskites. In particular, the tight connection of the inorganic layers by the divalent cations enhances structural rigidity and stability, further endowing 1 detector with ultralow dark current drift (3.06 × 10-8  nA cm-1  s-1  V-1 , 80 V), excellent multiple cycles switching X-ray irradiation stability, as well as long-term environmental stability (maintains over 94% photoresponse after 90 days). This work brings lead-free double perovskites one step closer to realizing efficient practical green applications.

18.
Angew Chem Int Ed Engl ; 63(14): e202401221, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38342759

RESUMEN

Metal-free molecular antiferroelectric (AFE) holds a promise for energy storage on account of its unique physical attributes. However, it is challenging to explore high-curie temperature (Tc) molecular AFEs, due to the lack of design strategies regarding the rise of phase transition energy barriers. By renewing the halogen substitution strategy, we have obtained a series of high-Tc molecular AFEs of the halogen-substituted phenethylammonium bromides (x-PEAB, x=H/F/Cl/Br), resembling the binary stator-rotator system. Strikingly, the p-site halogen substitution of PEA+ cationic rotators raises their phase transition energy barrier and greatly enhances Tc up to ~473 K for Br-PEAB, on par with the record-high Tc values for molecular AFEs. As a typical case, the member 4-fluorophenethylammonium bromide (F-PEAB) shows notable AFE properties, including high Tc (~374 K) and large electric polarization (~3.2 µC/cm2). Further, F-PEAB also exhibits a high energy storage efficiency (η) of 83.6 % even around Tc, catching up with other AFE oxides. This renewing halogen substitution strategy in the molecular AFE system provides an effective way to design high-Tc AFEs for energy storage devices.

19.
Angew Chem Int Ed Engl ; 63(11): e202320180, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38196036

RESUMEN

Three-dimensional (3D) organic-inorganic hybrid perovskites (OIHPs) have achieved tremendous success in direct X-ray detection due to their high absorption coefficient and excellent carrier transport. However, owing to the centrosymmetry of classic 3D structures, these reported X-ray detectors mostly require external electrical fields to run, resulting in bulky overall circuitry, high energy consumption, and operational instability. Herein, we first report the unprecedented radiation photovoltage in 3D OIHP for efficient self-driven X-ray detection. Specifically, the 3D polar OIHP MhyPbBr3 (1, Mhy=methylhydrazine) shows an intrinsic radiation photovoltage (0.47 V) and large mobility-lifetime product (1.1×10-3  cm2 V-1 ) under X-ray irradiation. Strikingly, these excellent physical characteristics endow 1 with sensitive self-driven X-ray detection performance, showing a considerable sensitivity of 220 µC Gy-1 cm-2 , which surpasses those of most self-driven X-ray detectors. This work first explores highly sensitive self-driven X-ray detection in 3D polar OIHPs, shedding light on future practical applications.

20.
Inorg Chem ; 63(4): 2275-2281, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38226409

RESUMEN

In recent years, there has been a surge in research enthusiasm on searching for solid-state nonlinear optical (NLO) switching materials in halide perovskites owing to their exceptional structural flexibility, compositional diversity, and broad property tenability. However, the majority of reported halide perovskite NLO switching materials contain toxic elements (e.g., Pb), which raise significant environmental concerns. Herein, we present a novel lead-free multilayered halide perovskite NLO switching material, (BA)2(EA)2Sn3Br10 (1, where BA is butylammonium and EA is ethylammonium). Driven by the stereochemically active lone-pair electrons of the Sn2+ cation and the cage-confined effect of EA rotators, 1 undergoes a phase transition with symmetry breaking from P4/mnc to Cmc21, which gives rise to a highly efficient modulation of the quadratic NLO property (0.7 times that of KH2PO4) at a high temperature of 353 K. Furthermore, crystallographic investigation combined with theoretical calculations reveals that the efficient modulation of NLO properties in 1 stems from the synergistic effects between stereochemically active lone pair-induced octahedral distortions and order/disorder transformation of organic cations. This study opens up an instructive avenue for designing and advancing environmentally friendly solid-state NLO switches in halide perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...