Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38398149

RESUMEN

Although the implantation of intact tumor fragments is a common practice to generate orthotopic xenografts to study tumor invasion and metastasis, the direct implantation of tumor cell suspensions is necessary when prior manipulations of tumor cells are required. However, the establishment of orthotopic xenografts using tumor cell suspensions is not mature, and a comparative study directly comparing their engraftment and metastatic capabilities is lacking. It is unclear whether tumor fragments are superior to cell suspensions for successful engraftment and metastasis. In this study, we employed three GC cell lines with varying metastatic capacities to stably express firefly luciferase for monitoring tumor progression in real time. We successfully minimized the risk of cell leakage during the orthotopic injection of tumor cell suspensions without Corning Matrigel by systematically optimizing the surgical procedure, injection volume, and needle size options. Comparable high engraftment and metastatic rates between these two methods were demonstrated using MKN-45 cells with a strong metastatic ability. Importantly, our approach can adjust the rate of tumor progression flexibly and cuts the experimental timeline from 10-12 weeks (for tumor fragments) to 4-5 weeks. Collectively, we provided a highly reproducible procedure with a shortened experimental timeline and low cost for establishing orthotopic GC xenografts via the direct implantation of tumor cell suspensions.

2.
Front Oncol ; 12: 999002, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338750

RESUMEN

Background: Postoperative pancreatic fistula (POPF) remains the primary complication of distal pancreatectomies. We aimed to review whether staple line reinforcement with continuous lockstitches would lead to decreased grade B and C pancreatic fistula in patients undergoing distal pancreatectomy. Methods: This retrospective study enrolled consecutive patients scheduled to undergo distal pancreatectomy at a large tertiary hospital. A comparison was conducted between lockstitch reinforcement and non-reinforcement for remnant closure during distal pancreatectomies from August 2016 to February 2021. Propensity score matching was applied to balance the two groups with covariates including abdominal and back pain, diabetes mellitus, and estimated blood loss. The primary outcome was POPF rate. Results: A total of 153 patients were enrolled in the study (89 lockstitch reinforcements, 64 non-reinforcements), of whom 128 patients (64 per group) were analyzed after propensity score matching (1:1). The total POPF rate was 21.9%. POPF was identified in 12.5% (8/64) of the patients who underwent resection with lockstitch reinforcement and 31.2% (20/64) of the patients without reinforcement (odds ratio 0.314, 95% confidence interval 0.130-0.760, P=0.010). No deaths occurred in either group. Neither the major complication rate nor the length of hospital stay after surgery differed between the groups. Conclusions: Compared with the use of stapler alone, staple line lockstitch reinforcement for remnant closure during distal pancreatectomy could reduce the POPF rate. Further multicenter randomized clinical trials are required to confirm these results.

3.
Sci Adv ; 8(15): eabg8335, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35417243

RESUMEN

Osteonecrosis of the femoral head (ONFH) commonly occurs after glucocorticoid (GC) therapy. The gut microbiota (GM) participates in regulating host health, and its composition can be altered by GC. Here, this study demonstrates that cohousing with healthy mice or colonization with GM from normal mice attenuates GC-induced ONFH. 16S rRNA gene sequencing shows that cohousing with healthy mice rescues the GC-induced reduction of gut Lactobacillus animalis. Oral supplementation of L. animalis mitigates GC-induced ONFH by increasing angiogenesis, augmenting osteogenesis, and reducing cell apoptosis. Extracellular vesicles from L. animalis (L. animalis-EVs) contain abundant functional proteins and can enter the femoral head to exert proangiogenic, pro-osteogenic, and antiapoptotic effects, while its abundance is reduced after exposure to GC. Our study suggests that the GM is involved in protecting the femoral head by transferring bacterial EVs, and that loss of L. animalis and its EVs is associated with the development of GC-induced ONFH.


Asunto(s)
Vesículas Extracelulares , Microbioma Gastrointestinal , Osteonecrosis , Animales , Vesículas Extracelulares/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Ratones , Osteonecrosis/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
4.
Acta Biochim Pol ; 69(1): 31-36, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34932899

RESUMEN

OBJECTIVE: The paper aimed to explore the mechanism of cellular retinoic acid binding protein 2 (CRABP2) involvement in Golgi stress and tumor dryness in non-small cell lung cancer (NSCLC) cells through the estrogen receptor (ER) dependent Hippo pathway. METHODS: Human NSCLC cell line A549 was purchased from ATCC andcultured in RPMI-1640 with 10% FBS. Attractene reagent was used for plasmid transfection. ER (sh) RNA was designed using RNAi Designer. Seventy-six hours after infection, stable cells were obtained after treated with puromycin for 3 weeks. ER silencing cells (with inhibited ER expression) were compared to the control cells (normal cultured NSCLC cell line A549, CRABP2 normal expression). CRABP2 and ER expression levels were detected by RT-PCR. MTT assay was used to detect cell proliferation, and the cell localization of ER and Golgi was observed by confocal microscopy. The invasion and metastasis of cells were analyzed by Boden chamber invasion and migration assays. Western blotting assays was used for detecting the protein expression of E-cadherin, vimentin, ZO-1 protein and epithelial-mesenchymal transition (EMT) related factors. RESULTS: The lower expression level of mRNA was detected in the ER-silencing group compared to the control group (P<0.05). We also found a higher proliferation level of cells, the number of invading and metastatic cells, the expression of vimentin, p-Lats1T1079, Lats1 and p-YAPS127 mRNA in the control group compared to the ER silencing group (P<0.05). And the expression level of protein kinase RNA-like endoplasmic reticulum kinase (PERK), phosphorylate eukaryotic initiation factor 2 (p-eIF2 alpha), activating transcription factor 4 (ATF4) and C/EBP-homologous protein (CHOP) in the control group was higher than that in the ER silencing group (P<0.05). Adversely, a lower expression level of E-cadherin and ZO-1 protein was found in the control group compared to the ER silencing group (P<0.05). CONCLUSION: The expression of CRABP2 in NSCLC cells was regulated by ER, and cell proliferation and invasion were regulated by the Hippo pathway. At the same time, it was found that decreased expression of CRABP2 enhanced endoplasmic reticulum/Golgi stress response.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Receptores de Ácido Retinoico/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Estrés del Retículo Endoplásmico , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Vía de Señalización Hippo , Humanos , Neoplasias Pulmonares/patología , Receptores de Estrógenos , Transducción de Señal
5.
Adv Sci (Weinh) ; 8(24): e2100808, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34719888

RESUMEN

A differentiation switch of bone marrow mesenchymal stem/stromal cells (BMSCs) from osteoblasts to adipocytes contributes to age- and menopause-associated bone loss and marrow adiposity. Here it is found that osteocytes, the most abundant bone cells, promote adipogenesis and inhibit osteogenesis of BMSCs by secreting neuropeptide Y (NPY), whose expression increases with aging and osteoporosis. Deletion of NPY in osteocytes generates a high bone mass phenotype, and attenuates aging- and ovariectomy (OVX)-induced bone-fat imbalance in mice. Osteocyte NPY production is under the control of autonomic nervous system (ANS) and osteocyte NPY deletion blocks the ANS-induced regulation of BMSC fate and bone-fat balance. γ-Oryzanol, a clinically used ANS regulator, significantly increases bone formation and reverses aging- and OVX-induced osteocyte NPY overproduction and marrow adiposity in control mice, but not in mice lacking osteocyte NPY. The study suggests a new mode of neuronal control of bone metabolism through the ANS-induced regulation of osteocyte NPY.


Asunto(s)
Adipocitos/metabolismo , Huesos/metabolismo , Neuropéptido Y/metabolismo , Osteoblastos/metabolismo , Osteoporosis/metabolismo , Adipogénesis/fisiología , Animales , Huesos/fisiopatología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Osteocitos/metabolismo , Osteogénesis/fisiología , Osteoporosis/fisiopatología
7.
Crit Rev Eukaryot Gene Expr ; 31(2): 25-33, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34347977

RESUMEN

This article aims to explore the effects and possible mechanism of miR-543 on small-cell lung carcinoma (SCLC) cells. The respective levels of miR-543 in lung carcinoma tissues, para-cancerous tissues, human normal lung cells MRC-9, and SCLC cells were detected by RT-qPCR. The proliferation, apoptosis, and migration of SCLC cells were detected after the miR-543 level in SCLC cells was altered by miRNA mimics and inhibitors. The levels of apoptosis-related proteins and potential downstream targeted proteins of miR-543 were detected by western blots. The study revealed that KNTC1 was highly expressed in lung carcinoma tissues and SCLC cells (P < 0.01). It also showed that knockdown of miR-543 can inhibit the proliferation and migration of SCLC cells, induce apoptosis, and increase the level of apoptosis-related proteins. These changes were reversed by the addition of mimics that increased miR-543 levels. The level of miR-543 was positively correlated with the protein expression level of downstream MUC1, ß-catenin, and CDC42 in SCLC cells, suggesting that miR-543 may play a role through them. Thus this study concludes that MiR-543 can affect the function of SCLC cells, which may play a crucial role in the presence and development of SCLC.


Asunto(s)
Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Neoplasias Pulmonares/patología , MicroARNs/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células Pequeñas/genética
8.
Crit Rev Eukaryot Gene Expr ; 31(3): 81-89, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34369716

RESUMEN

BACKGROUND: Our primary aim of the current study was to explore the correlation between plasma CRABP2 and migration, proliferation and invasion of non-small cell lung cancer (NSCLC) cells. METHODS: Human lung cancer cell line A549 was used in the present study, which was cultured in 6-well plates (1 × 106 cells/well) and then transfected with pcDNA-CRABP2 and pcDNA, siRNA with the use of Lipofectamine 2000 based on the manufacturer's protocol. The expression of CRABP2 mRNA was detected through real-time PCR. Proliferation was further detected using MTT assays, and apoptosis was monitored and recorded with the application of flow cytometry. The expression of E-cadherin, MMP9, vimentin and related pathway proteins was detected by Western blotting assays. Transwell assays and cell scratch assays were utilized for the detection of migration and invasion ability of A549 cells. RESULTS: RT-PCR results showed The CRABP2 mRNA transcript levels in the CRABP2 overexpression group were higher when comparing those of the empty vector group (P < 0.05). By MTT assays, CRABP2 overexpression promoted cellular proliferation, while CRABP2 downregulation inhibited cellular proliferation. CRABP2 overexpression inhibited cell apoptosis and promoted cellular proliferation. The number of TUNEL staining positive cells was the lowest in the CRABP2 overexpression group, and the siRNA transfection group had increased apoptosis. CRABP2 downregulation reduced EMT in cells and cell migration and invasion reflected from western blotting results and cell migration and invasion assay results, respectively. CONCLUSION: Inhibition of plasma CRABP2 expression offers the potential in terms of reducing the expression of MAPKs and proteins in the NF-κB pathway and inhibiting the proliferation and migration of NSCLC cells, which is ideally suited for further treatment for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Receptores de Ácido Retinoico/genética , Apoptosis/genética , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Supervivencia Celular/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Etiquetado Corte-Fin in Situ , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/metabolismo , Invasividad Neoplásica , Interferencia de ARN , Receptores de Ácido Retinoico/sangre , Receptores de Ácido Retinoico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética
9.
Theranostics ; 11(17): 8152-8171, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34373734

RESUMEN

Serious infection caused by multi-drug-resistant bacteria is a major threat to human health. Bacteria can invade the host tissue and produce various toxins to damage or kill host cells, which may induce life-threatening sepsis. Here, we aimed to explore whether fructose-coated Ångstrom-scale silver particles (F-AgÅPs), which were prepared by our self-developed evaporation-condensation system and optimized coating approach, could kill bacteria and sequester bacterial toxins to attenuate fatal bacterial infections. Methods: A series of in vitro assays were conducted to test the anti-bacterial efficacy of F-AgÅPs, and to investigate whether F-AgÅPs could protect against multi-drug resistant Staphylococcus aureus (S. aureus)- and Escherichia coli (E. coli)-induced cell death, and suppress their toxins (S. aureus hemolysin and E. coli lipopolysaccharide)-induced cell injury or inflammation. The mouse models of cecal ligation and puncture (CLP)- or E. coli bloodstream infection-induced lethal sepsis were established to assess whether the intravenous administration of F-AgÅPs could decrease bacterial burden, inhibit inflammation, and improve the survival rates of mice. The levels of silver in urine and feces of mice were examined to evaluate the excretion of F-AgÅPs. Results: F-AgÅPs efficiently killed various bacteria that can cause lethal infections and also competed with host cells to bind with S. aureus α-hemolysin, thus blocking its cytotoxic activity. F-AgÅPs inhibited E. coli lipopolysaccharide-induced endothelial injury and macrophage inflammation, but not by directly binding to lipopolysaccharide. F-AgÅPs potently reduced bacterial burden, reversed dysregulated inflammation, and enhanced survival in mice with CLP- or E. coli bloodstream infection-induced sepsis, either alone or combined with antibiotic therapy. After three times injections within 48 h, 79.18% of F-AgÅPs were excreted via feces at the end of the 14-day observation period. Conclusion: This study suggests the prospect of F-AgÅPs as a promising intravenous agent for treating severe bacterial infections.


Asunto(s)
Toxinas Bacterianas/antagonistas & inhibidores , Sepsis/tratamiento farmacológico , Plata/farmacología , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Modelos Animales de Enfermedad , Escherichia coli/efectos de los fármacos , Fructosa/farmacología , Proteínas Hemolisinas/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Lipopolisacáridos/antagonistas & inhibidores , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Nanopartículas/uso terapéutico , Sepsis/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos
10.
Adv Sci (Weinh) ; 8(9): 2004831, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33977075

RESUMEN

Recently, the gut microbiota (GM) has been shown to be a regulator of bone homeostasis and the mechanisms by which GM modulates bone mass are still being investigated. Here, it is found that colonization with GM from children (CGM) but not from the elderly (EGM) prevents decreases in bone mass and bone strength in conventionally raised, ovariectomy (OVX)-induced osteoporotic mice. 16S rRNA gene sequencing reveals that CGM reverses the OVX-induced reduction of Akkermansia muciniphila (Akk). Direct replenishment of Akk is sufficient to correct the OVX-induced imbalanced bone metabolism and protect against osteoporosis. Mechanistic studies show that the secretion of extracellular vesicles (EVs) is required for the CGM- and Akk-induced bone protective effects and these nanovesicles can enter and accumulate into bone tissues to attenuate the OVX-induced osteoporotic phenotypes by augmenting osteogenic activity and inhibiting osteoclast formation. The study identifies that gut bacterium Akk mediates the CGM-induced anti-osteoporotic effects and presents a novel mechanism underlying the exchange of signals between GM and host bone.


Asunto(s)
Densidad Ósea/fisiología , Huesos/metabolismo , Vesículas Extracelulares/metabolismo , Microbioma Gastrointestinal/fisiología , Osteoporosis/metabolismo , Osteoporosis/fisiopatología , Factores de Edad , Anciano , Animales , Preescolar , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
11.
Theranostics ; 11(5): 2395-2409, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33500732

RESUMEN

Alzheimer's disease (AD) is currently ranked as the third leading cause of death for eldly people, just behind heart disease and cancer. Autophagy is declined with aging. Our study determined the biphasic changes of miR-331-3p and miR-9-5p associated with AD progression in APPswe/PS1dE9 mouse model and demonstrated inhibiting miR-331-3p and miR-9-5p treatment prevented AD progression by promoting the autophagic clearance of amyloid beta (Aß). Methods: The biphasic changes of microRNAs were obtained from RNA-seq data and verified by qRT-PCR in early-stage (6 months) and late-stage (12 months) APPswe/PS1dE9 mice (hereinafter referred to as AD mice). The AD progression was determined by analyzing Aß levels, neuron numbers (MAP2+) and activated microglia (CD68+IBA1+) in brain tissues using immunohistological and immunofluorescent staining. MRNA and protein levels of autophagic-associated genes (Becn1, Sqstm1, LC3b) were tested to determine the autophagic activity. Morris water maze and object location test were employed to evaluate the memory and learning after antagomirs treatments in AD mice and the Aß in the brain tissues were determined. Results: MiR-331-3p and miR-9-5p are down-regulated in early-stage of AD mice, whereas up-regulated in late-stage of AD mice. We demonstrated that miR-331-3p and miR-9-5p target autophagy receptors Sequestosome 1 (Sqstm1) and Optineurin (Optn), respectively. Overexpression of miR-331-3p and miR-9-5p in SH-SY5Y cell line impaired autophagic activity and promoted amyloid plaques formation. Moreover, AD mice had enhanced Aß clearance, improved cognition and mobility when treated with miR-331-3p and miR-9-5p antagomirs at late-stage. Conclusion: Our study suggests that using miR-331-3p and miR-9-5p, along with autophagic activity and amyloid plaques may distinguish early versus late stage of AD for more accurate and timely diagnosis. Additionally, we further provide a possible new therapeutic strategy for AD patients by inhibiting miR-331-3p and miR-9-5p and enhancing autophagy.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Autofagia , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , MicroARNs/antagonistas & inhibidores , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Humanos , Masculino , Ratones , Ratones Transgénicos , MicroARNs/genética , Neuronas/metabolismo , Neuronas/patología
12.
Ann Palliat Med ; 10(2): 1961-1975, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33440970

RESUMEN

BACKGROUND: Yoga receive more attention from breast cancer patients, however its feasibility and efficacy during chemotherapy remains conflicting. We performed this systematic review to assess the effects of yoga on health-related quality, physical health and psychological health in breast cancer patients undergoing chemotherapy. METHODS: A systematic search was conducted to retrieve randomized controlled trials (RCTs) which investigated the comparative efficacy of yoga versus comparators such as usual care among breast cancer patients for health-related quality, physical health and psychological health in PubMed, EMBASE, Cochrane Central Register of Controlled Trials (CNETRAL), Nursing and Allied Health Literature (CINAHL), Chinese Biomedical Literature (CBM) Database, China Science and Technology Journal (CSTJ) Database, China National Knowledge Infrastructure (CNKI), and Wangfang Database from inception to December 2018. The latest search was updated on September 2020. All analyses were completed using RevMan version 5.3. RESULTS: Seven trials involving 693 breast cancer patients met inclusion criteria. Meta-analysis indicated a short-term improvement in fatigue [standard mean difference (SMD), -0.62; 95% confidence interval (CI), -1.17 to -0.07], sleep disturbance (SMD, -0.34; 95% CI, -0.55 to -0.12), depression (SMD, -0.50; 95% CI, -0.70 to -0.31) anxiety (SMD, -0.50; 95% CI, -0.70 to -0.31), and health-related quality of life (QoL) (SMD, 0.72; 95% CI, -0.12 to 1.56) in the yoga group; however beneficial medium- and long-term effects in fatigue, sleep disturbance were not identified. Moreover, qualitative analyses suggested that yoga was not associated with decreased adverse events (AEs) compared with control groups. CONCLUSIONS: Yoga may benefit to reduce fatigue, depression and anxiety, improve sleep disturbance, and improve QoL in breast cancer patients receiving chemotherapy in the short-term; however, medium- and long-term effects should be further established owing to limitations.


Asunto(s)
Neoplasias de la Mama , Yoga , Neoplasias de la Mama/tratamiento farmacológico , China , Depresión , Femenino , Humanos , Salud Mental , Calidad de Vida
13.
Autophagy ; 17(10): 2766-2782, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33143524

RESUMEN

Senile osteoporosis (OP) is often concomitant with decreased autophagic activity. OPTN (optineurin), a macroautophagy/autophagy (hereinafter referred to as autophagy) receptor, is found to play a pivotal role in selective autophagy, coupling autophagy with bone metabolism. However, its role in osteogenesis is still mysterious. Herein, we identified Optn as a critical molecule of cell fate decision for bone marrow mesenchymal stem cells (MSCs), whose expression decreased in aged mice. Aged mice revealed osteoporotic bone loss, elevated senescence of MSCs, decreased osteogenesis, and enhanced adipogenesis, as well as optn-/ - mice. Importantly, restoring Optn by transplanting wild-type MSCs to optn-/ - mice or infecting optn-/ - mice with Optn-containing lentivirus rescued bone loss. The introduction of a loss-of-function mutant of OptnK193R failed to reestablish a bone-fat balance. We further identified FABP3 (fatty acid binding protein 3, muscle and heart) as a novel selective autophagy substrate of OPTN. FABP3 promoted adipogenesis and inhibited osteogenesis of MSCs. Knockdown of FABP3 alleviated bone loss in optn-/ - mice and aged mice. Our study revealed that reduced OPTN expression during aging might lead to OP due to a lack of FABP3 degradation via selective autophagy. FABP3 accumulation impaired osteogenesis of MSCs, leading to the occurrence of OP. Thus, reactivating OPTN or inhibiting FABP3 would open a new avenue to treat senile OP.Abbreviations: ADIPOQ: adiponectin, C1Q and collagen domain containing; ALPL: alkaline phosphatase, liver/bone/kidney; BGLAP/OC/osteocalcin: bone gamma carboxyglutamate protein; BFR/BS: bone formation rate/bone surface; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A/p21: cyclin-dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CDKN2B/p15: cyclin dependent kinase inhibitor 2B; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; COL1A1: collagen, type I, alpha 1; Ct. BV/TV: cortical bone volume fraction; Ct. Th: cortical thickness; Es. Pm: endocortical perimeter; FABP4/Ap2: fatty acid binding protein 4, adipocyte; H2AX: H2A.X variant histone; HE: hematoxylin and eosin; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAR: mineral apposition rate; MSCs: bone marrow mesenchymal stem cells; NBR1: NBR1, autophagy cargo receptor; OP: osteoporosis; OPTN: optineurin; PDB: Paget disease of bone; PPARG: peroxisome proliferator activated receptor gamma; Ps. Pm: periosteal perimeter; qRT-PCR: quantitative real-time PCR; γH2AX: Phosphorylation of the Serine residue of H2AX; ROS: reactive oxygen species; RUNX2: runt related transcription factor 2; SA-GLB1: senescence-associated (SA)-GLB1 (galactosidase, beta 1); SP7/Osx/Osterix: Sp7 transcription factor 7; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; Tb. BV/TV: trabecular bone volume fraction; Tb. N: trabecular number; Tb. Sp: trabecular separation; Tb. Th: trabecular thickness; µCT: micro computed tomography.


Asunto(s)
Envejecimiento , Autofagia , Proteínas de Ciclo Celular , Proteína 3 de Unión a Ácidos Grasos , Proteínas de Transporte de Membrana , Células Madre Mesenquimatosas , Adipogénesis , Animales , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Osteogénesis , Osteoporosis , Microtomografía por Rayos X
14.
J Asthma ; 58(8): 1003-1012, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32329381

RESUMEN

OBJECTIVES: Bronchial asthma can be effectively controlled but not be cured, its etiology and pathogenesis are still unclear, and there are no effective preventive measures. The key characteristic of asthma is chronic airway inflammation, and recent research has found that airway neurogenic inflammation plays an important role in asthma. We previously found that Mycobacterium vaccae nebulization protects against asthma. Therefore, this objective of this study is to explore the effect of M. vaccae nebulization on asthmatic neural mechanisms. METHODS: A total 18 of female Balb/c mice were randomized into normal, asthma control, and M. vaccae nebulization (Neb.group) groups, and mice in the Neb.group were nebulized with M. vaccae one month before the asthmatic model was established. Then, 1 month later, the mice were sensitized and challenged with ovalbumin. Twenty-four hours after the last challenge, mouse airway responsiveness; pulmonary brain-derived neurotropic factor (BDNF), neurofilament-medium length (NF-M, using NF09 antibody), and acetylcholine expression; and nerve growth factor (NGF) mRNA level were determined. RESULTS: We found that the BDNF, NF09, acetylcholine expression, and NGF mRNA level were decreased in the Neb.group compared with levels in the asthma control group. CONCLUSION: M. vaccae nebulization may protected in Balb/c mice against bronchial asthma through neural mechanisms.


Asunto(s)
Asma/prevención & control , Mycobacteriaceae , Acetilcolina/análisis , Animales , Asma/metabolismo , Asma/patología , Factor Neurotrófico Derivado del Encéfalo/análisis , Femenino , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Factor de Crecimiento Nervioso/análisis , Factor de Crecimiento Nervioso/genética
15.
Sci Adv ; 6(43)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097529

RESUMEN

Poor wound healing after diabetes or extensive burn remains a challenging problem. Recently, we presented a physical approach to fabricate ultrasmall silver particles from Ångstrom scale to nanoscale and determined the antitumor efficacy of Ångstrom-scale silver particles (AgÅPs) in the smallest size range. Here we used the medium-sized AgÅPs (65.9 ± 31.6 Å) to prepare carbomer gel incorporated with these larger AgÅPs (L-AgÅPs-gel) and demonstrated the potent broad-spectrum antibacterial activity of L-AgÅPs-gel without obvious toxicity on wound healing-related cells. Induction of reactive oxygen species contributed to L-AgÅPs-gel-induced bacterial death. Topical application of L-AgÅPs-gel to mouse skin triggered much stronger effects than the commercial silver nanoparticles (AgNPs)-gel to prevent bacterial colonization, reduce inflammation, and accelerate diabetic and burn wound healing. L-AgÅPs were distributed locally in skin without inducing systemic toxicities. This study suggests that L-AgÅPs-gel represents an effective and safe antibacterial and anti-inflammatory material for wound therapy.


Asunto(s)
Quemaduras , Nanopartículas del Metal , Resinas Acrílicas , Animales , Antibacterianos/farmacología , Quemaduras/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Ratones , Plata/farmacología , Cicatrización de Heridas
16.
Cell Death Dis ; 11(9): 735, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32913182

RESUMEN

Novel targets are required to improve the outcomes for patients with colorectal cancers. In this regard, the selective inhibitor of the pro-survival protein BCL2, venetoclax, has proven highly effective in several hematological malignancies. In addition to BCL2, potent and highly selective small molecule inhibitors of its relatives, BCLxL and MCL1, are now available, prompting us to investigate the susceptibility of colorectal cancers to the inhibition of one or more of these pro-survival proteins. While targeting BCLxL, but not BCL2 or MCL1, on its own had some impact, most (15/17) of the immortalized colorectal cancer cell lines studied were efficiently killed by the combined targeting of BCLxL and MCL1. Importantly, these in vitro findings were confirmed in a xenograft model and, interestingly, in all (5/5) patient derived tumor organoids evaluated. Our results lend strong support to the notion that BCLxL and MCL1 are highly promising targets for further evaluation in efforts to improve the treatment of colorectal cancers.


Asunto(s)
Neoplasias Colorrectales/genética , Susceptibilidad a Enfermedades/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Humanos , Ratones
17.
Artículo en Inglés | MEDLINE | ID: mdl-32834825

RESUMEN

BACKGROUND: Mycobacterium vaccae nebulization imparted protective effect against allergic asthma in a mouse model. The TGF-ß/Smad signal transduction pathway plays an important role in allergic bronchial asthma. However, the effect of M. vaccae nebulization on the TGF-ß/Smad signal transduction pathway in mouse models of allergic asthma remains unclear. This study investigated the preventive effect of M. vaccae nebulization during bronchial asthma in a mouse model and elucidate the implication of TGF-ß/Smad signal transduction pathway in the process. METHODS: In total, 24 female Balb/c mice were randomized to normal control (group A), asthma control (group B), and M. vaccae nebulization (group C) groups. Both groups B and C were sensitized using ovalbumin for establishment of the asthmatic model; group A received phosphate-buffered solution. Prior to the establishment of asthma, Group C was nebulized with M. vaccae. Airway responsiveness was measured in all the groups, using a noninvasive lung function machine before and 24 h after establishment of the asthmatic model. The animals were then harvested, and bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The total cell counts in BALF was estimated. Protein expression of TGF-ß1, TßR1, Smad1, and Smad7 was detected by immunohistochemistry. The population of CD3 + γδT, IL-13 + CD3 + T, TGF-ß + CD3 + T, IL-13 + CD3 + γδT, and TGF-ß+ CD3+ γδT cells were detected by flow cytometry. One-way analysis of variance for within-group comparisons, the least significant difference t-test or Student-Newman-Keuls test for intergroup comparisons, and the nonparametric rank sum test for analysis of airway inflammation scores were used in the study. RESULTS: The eosinophil count; protein expression of TGF-ß1, TßR1, and Smad1; and percentages of CD3 + γδT and IL-13 + CD3 + T cells were significantly lower in the M. vaccae nebulization group than in the asthma control group (P < 0.01). There were significant intergroup differences in the percentages of TGF-ß + CD3 + T and IL-13 + CD3 + γδT cells (P < 0.05). CONCLUSIONS: Mycobacterium vaccae nebulization could confer protection against allergic bronchial asthma by reducing airway responsiveness and alleviating airway inflammation in mice. The underlying mechanism might be attributed its effect on the deregulated expression of TGF-ß1, TßR1, Smad1, and Smad7 of the TGF-ß/Smad signal transduction pathway.

18.
Theranostics ; 10(17): 7710-7729, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32685015

RESUMEN

Osteosarcoma is a common malignant bone cancer easily to metastasize. Much safer and more efficient strategies are still needed to suppress osteosarcoma growth and lung metastasis. We recently presented a pure physical method to fabricate Ångstrom-scale silver particles (AgÅPs) and determined the anti-tumor efficacy of fructose-coated AgÅPs (F-AgÅPs) against lung and pancreatic cancer. Our study utilized an optimized method to obtain smaller F-AgÅPs and aimed to assess whether F-AgÅPs can be used as an efficient and safe agent for osteosarcoma therapy. We also investigated whether the induction of apoptosis by altering glucose metabolic phenotype contributes to the F-AgÅPs-induced anti-osteosarcoma effects. Methods: A modified method was developed to prepare smaller F-AgÅPs. The anti-tumor, anti-metastatic and pro-survival efficacy of F-AgÅPs and their toxicities on healthy tissues were compared with that of cisplatin (a first-line chemotherapeutic drug for osteosarcoma therapy) in subcutaneous or orthotopic osteosarcoma-bearing nude mice. The pharmacokinetics, biodistribution and excretion of F-AgÅPs were evaluated by testing the levels of silver in serum, tissues, urine and feces of mice. A series of assays in vitro were conducted to assess whether the induction of apoptosis mediates the killing effects of F-AgÅPs on osteosarcoma cells and whether the alteration of glucose metabolic phenotype contributes to F-AgÅPs-induced apoptosis. Results: The newly obtained F-AgÅPs (9.38 ± 4.11 nm) had good stability in different biological media or aqueous solutions and were more effective than cisplatin in inhibiting tumor growth, improving survival, attenuating osteolysis and preventing lung metastasis in osteosarcoma-bearing nude mice after intravenous injection, but were well tolerated in normal tissues. One week after injection, about 68% of F-AgÅPs were excreted through feces. F-AgÅPs induced reactive oxygen species (ROS)-dependent apoptosis of osteosarcoma cells but not normal cells, owing to their ability to selectively shift glucose metabolism of osteosarcoma cells from glycolysis to mitochondrial oxidation by inhibiting pyruvate dehydrogenase kinase (PDK). Conclusion: Our study suggests the promising prospect of F-AgÅPs as a powerful selective anticancer agent for osteosarcoma therapy.


Asunto(s)
Neoplasias Óseas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas del Metal/administración & dosificación , Osteosarcoma/tratamiento farmacológico , Plata/administración & dosificación , Adolescente , Animales , Apoptosis/efectos de los fármacos , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/administración & dosificación , Femenino , Fructosa/química , Humanos , Lactante , Recién Nacido , Inyecciones Intravenosas , Neoplasias Pulmonares/secundario , Masculino , Nanopartículas del Metal/química , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Osteosarcoma/secundario , Oxidación-Reducción/efectos de los fármacos , Cultivo Primario de Células , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Eliminación Renal , Transducción de Señal/efectos de los fármacos , Plata/farmacocinética , Plata/orina , Distribución Tisular , Efecto Warburg en Oncología/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
19.
Acta Biomater ; 111: 208-220, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32447063

RESUMEN

Osteonecrosis of the femoral head (ONFH) frequently occurs after glucocorticoid (GC) treatment. Extracellular vesicles (EVs) are important nano-sized paracrine mediators of intercellular crosstalk. This study aimed to determine whether EVs from human urine-derived stem cells (USC-EVs) could protect against GC-induced ONFH and focused on the impacts of USC-EVs on angiogenesis and apoptosis to explore the mechanism by which USC-EVs attenuated GC-induced ONFH. The results in vivo showed that the intravenous administration of USC-EVs at the early stage of GC exposure could rescue angiogenesis impairment, reduce apoptosis of trabecular bone and marrow cells, prevent trabecular bone destruction and improve bone microarchitecture in the femoral heads of rats. In vitro, USC-EVs reversed the GC-induced suppression of endothelial angiogenesis and activation of apoptosis. Deleted in malignant brain tumors 1 (DMBT1) and tissue inhibitor of metalloproteinases 1 (TIMP1) proteins were enriched in USC-EVs and essential for the USC-EVs-induced pro-angiogenic and anti-apoptotic effects in GC-treated cells, respectively. Knockdown of TIMP1 attenuated the protective effects of USC-EVs against GC-induced ONFH. Our study suggests that USC-EVs are a promising nano-sized agent for the prevention of GC-induced ONFH by delivering pro-angiogenic DMBT1 and anti-apoptotic TIMP1. STATEMENT OF SIGNIFICANCE: This study demonstrates that the intravenous injection of extracellular vesicles from human urine-derived stem cells (USC-EVs) at the early stage of glucocorticoid (GC) exposure efficiently protects the rats from the GC-induced osteonecrosis of the femoral head (ONFH). Moreover, this study identifies that the promotion of angiogenesis and inhibition of apoptosis by transferring pro-angiogenic DMBT1 and anti-apoptotic TIMP1 proteins contribute importantly to the USC-EVs-induced protective effects against GC-induced ONFH. This study suggests the promising prospect of USC-EVs as a new nano-sized agent for protecting against GC-induced ONFH, and the potential of DMBT1 and TIMP1 as the molecular targets for further augmenting the protective function of USC-EVs.


Asunto(s)
Vesículas Extracelulares , Osteonecrosis , Animales , Proteínas de Unión al Calcio , Proliferación Celular , Proteínas de Unión al ADN , Cabeza Femoral , Glucocorticoides , Humanos , Ratas , Células Madre , Inhibidor Tisular de Metaloproteinasa-1 , Proteínas Supresoras de Tumor
20.
J Aerosol Med Pulm Drug Deliv ; 33(5): 249-257, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32301643

RESUMEN

Background: Respiratory syncytial virus (RSV) infection is the most common cause of acute lower respiratory tract infection in children, leading to their death. Currently, no effective prevention and treatment methods for RSV infection are available. RSV and many other unknown viruses pose a serious threat to human health. Our previous study demonstrated that Mycobacterium vaccae nebulization can protect against allergic asthma. As RSV infection and asthma are closely related, we hypothesized that M. vaccae could protect against pulmonary RSV infection. Therefore, we evaluated the effect of M. vaccae on RSV infection in Balb/c mice. Methods: The mice were randomized into three groups: normal, RSV, and M. vaccae. One week before the RSV infection model was established, the mice in the M. vaccae group were nebulized with M. vaccae. On the fourth day after RSV infection, airway responsiveness, airway inflammation, pulmonary RSV infection, mRNA levels of pulmonary toll-like receptor (TLR) 7 and TLR8, and pulmonary NF09, acetylcholine, and epidermal growth factor regulator (EGFR) expression levels in all mice were measured. Results: The airway inflammation in the M. vaccae group was alleviated compared with that in the RSV group. In the M. vaccae group, the pulmonary mRNA level of RSV and the pulmonary expression levels of NF09, acetylcholine, and EGFR were decreased considerably, whereas the mRNA levels of TLR7 and TLR8 were increased significantly. Conclusions: One-week nebulization of M. vaccae can protect against RSV infection in Balb/c mice. The mechanism involves the regulation of neurotransmitters and expression of TLR7, TLR8, and EGFR.


Asunto(s)
Pulmón/virología , Mycobacteriaceae/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Administración por Inhalación , Animales , Receptores ErbB/genética , Femenino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos BALB C , ARN Viral/genética , Infecciones por Virus Sincitial Respiratorio/inmunología , Receptor Toll-Like 7/genética , Receptor Toll-Like 8/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA